

RESTATEMENT OF RESOURCES FOR CURRAJONG, CALEDONIAN AND DONKEY HILL

Highlights

- Clarification of Resource Estimates for the Currajong, Caledonian and Donkey Hill deposits
- Resource Estimates are unchanged

3D Resources Limited (ASX:DDD) (3D Resources or the Company) provides the following additional information to clarify and restate a Resource Estimation for the Currajong, Caledonian and Donkey Hill Deposits to JORC (2012) Standards which was announced on 17 August 2020.

The Resource Estimate which was prepared by a Consultant engaged by the Company and which was announced on 17 August 2020 failed to provide Sections 1 & 2 of JORC Table 1, and instead cross referenced earlier public reports the Consultant had published that had included these Sections. The report also noted that there was a risk that the Resource Estimate had not excluded all past mining.

This revised announcement and Resource Report updates the information supplied in 2020 with the following additional information:

- A Resource report including the addition of Sections 1 & 2 to JORC Table 1 prepared by the Consultant (Robin Rankin of GeoRes) is attached to this Announcement to provide information on sampling and assay techniques used in the Resource Estimation.
- The drilling and associated sampling and assaying used in the Resource Estimation encompassed several phases of drilling activity, some of which dates back to 1979 and involves more than 7 different exploration companies. The information provided is therefore a summary of activities that includes the period from 1996 while Robin Rankin has been involved in the project (and where JORC compliance was mandatory) and a summary of the activity used by Robin Rankin in compiling the data and confirming earlier drill results.

As noted in the amended JORC report, the historical production has not been specifically excluded from these resource estimates so a risk remains that some of the estimated resources may have been mined, though it is important to recognise that:

- There is insufficient drilling density to define the extent of old workings accurately but where old workings have been intersected they create a hole on the resource estimation as zero grade is applied to old workings/stope fill. However, this lower density drilling is reflected in the fact that the Resource Estimates are predominantly (89%) in the Inferred Resource category for these 3 deposits.
- Records of old mining activity at the three deposits was too scarce to allow their extent to be modelled
 and consequently past production from some of these old workings is not excluded from the Resources
 reported.
- Historical mining activity focussed solely on small volume higher grade ore shoots with records showing
 the grades mined exceeded 30g/t Au (see Primefacts #558 Adelong Gold and DIGS Ref R00046736)
 whereas the grades of resources currently reported were generally considered sub-economic in prior
 periods of exploration and mining activity. In some cases there is evidence of selective mining of the
 high grade component of the vein but the remaining unmined component of the vein has been used in
 the resource estimation.

- Historical production estimates show quite low levels of production at each of these deposits with previous reports published by GeoRes in the 2016 Prospectus issued by Macquarie Gold Ltd showing:
 - o Currajong recording approximately 6,000oz of gold production
 - Caledonian recording 2,000oz of gold production
 - Donkey Hill Line of workings (includes production from Lady Clare and Fletchers that are outside the current resource) having an estimated 8,000oz of gold production

As noted in the JORC Report, the combined 16,000 oz of historic production from the three deposits potentially represents approx. 17% of the 91,400 oz reported although that may be closer to approx. 10% as the historic figures apply to deposit extensions not included in these estimates.

The report by Robin Rankin provides detailed coverage of the Resource assessment process that was completed to generate the Resource Estimates for the Currajong, Caledonian and Donkey Hill Deposits. These 3 deposits form only a part of the total Resources Estimates for the Adelong Gold Project as the main deposit at Challenger has been excluded from this resource estimation. These Resources are largely (89%) categorised as Inferred Resources as only a small portion of the Currajong Deposit has been drilled to the level of accuracy to define a higher resource category.

Summary of the basis for Resource Estimates

Geology and Geological Interpretation

The geology of the three deposits is adequately covered in more detail in the attached Resource Report. In the case of all three deposits assessed, the majority of the mineralisation is confined to specific narrow steep veins dipping (70-80° to the West) that have a regional trend of 350-355°. These deposits are represented by multiple sub parallel mineralised veins potentially within "shear zones". Historical mining activity as well as detailed structural interpretation, confirm this interpretation.

While the higher grade veins contained within these shear zones may be limited in extent, the structures in which they are hosted can be traced for a considerable distance and sub grade mineralisation is often present defining the structure's location well beyond the resource boundaries. Within these structures the veins typically pinch and swell.

At this stage all the resources estimates are open at depth and most are open along strike, so the potential for expansion of these resources is good.

Donkey Hill

Four parallel vein deposits have been modelled showing the mineralisation following near vertical shear zones striking 355°. The veins are cutting through a circular Norite plug. An additional vein structure had been intersected in one drill hole to the East which at this stage has not been assessed for resource purposes.

Caledonian

Past drilling had clearly some potential as it had one of the highest grades encountered with 117 g/t Au. A total of 20 sub-vertical veins were identified trending approximately 350° N, of these, 14 veins had sufficient information to be modelled. These mineralised shears were identified over a zone 200 m (E-W) and over a strike length of 750 m

Figure 1 - 3D image of Donkey Hill veins showing the limited extent of drilling

Figure 2 - Drill location superimposed on detailed magnetic data that shows the Norite Plug as a magnetic high but also the presence of shear zones continuing north for approximately 500m

Currajong

This current assessment has reviewed the drilling and remodelled the vein system at Currajong in a lot more detail than before. The Currajong West deposit was largely brought to a resource in 2005 but to the east of those veins a further 12 veins are present. These eastern deposits are mostly poorly drilled, or carry lower grades and so require further exploration to identify the potential resources in more detail. In the near surface environment a broader low grade halo exists.

Drilling Techniques

The attached Resource Report details the history of modern exploration at Adelong which shows there has been several periods of Reverse Circulation Drilling and Diamond drilling carried out since 1979 by several significant and lesser known companies, with JORC Table 1 providing an overview of this long exploration history. Some shallow RAB and Blasthole drilling has occurred mainly in search of extensions to the vein system. A review of the Resource report shows that this drilling technique has been used in defining the position of individual veins but grades of intersections reported for these vein intersections are nearly always below the 1g/tAu cut off so this the resource estimates have not relied on this inferior drilling technique in any material way.

In all other matters (orientation, surveys, logging, records) the drilling appears to have been carried out in a competent way that would allow this drilling to be used in Resource Estimation.

Sampling and Subsampling techniques

The records show these drill holes have been appropriately sampled and analysed at accredited laboratories and as reported the work has shown a degree of repeatability in results between phases and types of drilling techniques used. This information would support the use of this historical exploration database in any Resource Estimation.

Sample Analysis Method

Most of the samples have been assayed via fire assay at recognised and accredited laboratory. Some of the very early drilling core involved sampling/assaying in 4 ways and there has been some work done on Cyanide Leach of larger 1kg samples. The methods used are appropriate for this deposit. It should be noted that there is an issue with coarse gold that can have a nugget effect. This "nugget effect" remains a factor that needs to be recognised in assessing any individual sample results and this effect tends to favour assaying techniques applied to larger samples.

Resource Classification

As noted above, the majority (89%) of the Resource Estimates for Caledonian, Currajong and Donkey Hill fall in the Inferred Resource category. This is appropriate given that continuity of mineralisation is evident in the continuity of the mineralised structures but at this stage the drill spacing is inadequate to fully define the extent of historical workings or adequately define the ore shoots. In the case of Currajong deposit some of the drill density (<20m spacing) allows some of this resource to be quoted as an Indicated Resource.

Estimation Methodology

The Resource Estimation was undertaken using Minex Genesis software that is specifically designed for the task of resource estimation calculation and geological modelling. The approach taken of identifying and modelling the individual veins based on drill intersections and then applying a geostatistical algorithm to populate blocks (and 10 sub-blocks) with values is appropriate in this narrow vein and style of deposits.

Cut Off Grades

The Resource Estimates reporting supplied in the attached report are based on a cut-off grade of 1g/t Au. This has been a historical "standard" for reporting Adelong resource estimates. This cut-off grade would be a reasonably conservative for open cut mining at Adelong with recent work suggesting a lower cut-off at 0.7-0.8g/t Au may be feasible to mine and treat Adelong ore commercially, but equally underground mining and treatment costs may suggest a 1.8-2g/t Au would be applicable for underground mining.

Mining and Metallurgical Matters

Mining and Processing cost estimates have been completed, but primarily for the Challenger Deposit. The nature of the mineralisation at Currajong, Caledonian and Donkey Hill are much the same as that at Challenger.

With regards the potential to mine the Currajong, Caledonian and Donkey Hill deposits, work has shown the multiple parallel veins can be mined potentially commercially via an Open Cut at the Currajong and Caledonian Deposits. Open Cut resource potential at Donkey Hill would be limited as only 3 narrow veins exist and those resources that remain are a short section of the southern extension of this deposit from the mined out area around the shafts. The Donkey Hill deposit as it is best considered for underground mining.

At this stage, the drilling is insufficient to undertake any underground mine design on any of the three deposits and so additional drilling and resource upgrades would be required in order to better define historical workings and ore grade distribution (for mine planning and mining safety reasons). However, the majority of the resources at each of the deposits exceed the cut-off for potential underground mining.

Metallurgical test work has shown that Adelong ore is amenable to a range of commercial process routes and the one selected for Adelong involves a combination of gravity concentration and cyanidation. These tests have shown a +92% gold recovery to a gold dore on Challenger ores. Preliminary test work on +20 kg bulk samples

taken from Mullock material other deposits including those covered in this resource estimate show that the same approach is effective on these other deposits.

Overall Summary

The Resource Estimates for the Currajong, Caledonian and Donkey Hill Deposits can be summarised in the following (Table 1).

Table 1: Resources Stat	ement (JORC 2012) based or	n 1g/tAu Cutoff		
Currajong West and Currajong East		Tonnes (t)	Au (g/t)	Au (oz)
Measured	-	-	-	-
Indicated	24%	126,000	2.57	10,400
Inferred	76%	407,000	2.63	34,400
Total	100%	533,000	2.61	44,800
Caledonian		Tonnes (t)	Au (g/t)	Au (oz)
Measured	-	-	-	-
Indicated	-	-	-	-
Inferred	100%	157,000	5.94	30,000
Total	100%	157,000	5.94	30,000
Donkey Hill		Tonnes (t)	Au (g/t)	Au (oz)
Measured	-	-	-	-
Indicated	-	-	-	-
Inferred	100%	103,000	5.03	16,600
Total	100%	103,000	5.03	16,600
TOTAL ADELONG GOLD	PROJECT RESOURCES*	Tonnes (t)	Au (g/t)	Au (oz)
Measured	-			
Indicated	11%	126,000	2.57	10,400
Inferred	89%	667,000	3.78	81,000
Total	100%	793,000	3.59	91,400

Table 1 Represents a Summary of Resource Estimates for Currajong, Caledonian and Donkey Hill Deposits – It is important to note this resource estimate <u>Excludes</u> the Challenger Deposit which is reported separately

This is a fair representation of the resources in the Currajong, Caledonian and Donkey Hill deposits and while there may be some risk that some of these estimated resources could have historically been mined, the quantum is likely to be small. Additional Drilling will be required to improve the resource category and to fully assess the extent of historical workings and the distribution of high grade ore shoots.

A Resource Report is currently being prepared for the Challenger Deposit that includes a Section 1 & 2 JORC Table 1 and additional information to replace the earlier report released on 30 August 2021.

-ENDS-

Released with the authority of the Board.

For further information on the Company and our projects, please visit: 3dresources.com.au

Contact:

3D Resources Ltd

Peter Mitchell
Managing Director
peter.mitchell@3dresources.com.au
+61 400 880 309

Andrew Draffin
Company Secretary
andrew.draffin@3dresources.com.au
+61 3 8611 5333

Mark Flynn Investor Relations mark.flynn@3dresources.com.au +61 416 068 733

Competent Persons Statement

Information attached to this "ASX Announcement" is a JORC (2012) Resource Estimation published by Robin Rankin who is the Competent Person and Member of the AusIMM in respect of those Resource Estimates.

Mr Peter Mitchell has prepared the "ASX Announcement" of the JORC (2012) Resource Estimate based on the report prepared by Robin Rankin and his own experience with the Exploration Results and geological data for this Project. Mr Peter Mitchell is a Member of the Australasian Institute of Mining and Metallurgy, the Institute of Materials, Minerals and Mining and the Canadian Institute of Mining, Metallurgy and Petroleum. He is Managing Director and paid by 3D Resources Ltd. Peter Mitchell has sufficient experience that is relevant to the style of mineralisation and types of deposits under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Peter Mitchell believes that these Resource Estimates fairly represent the resources the subject of this Report.

The JORC (2012) Resource Estimates and associated report attached to this announcement was prepared Robin Rankin. Robin Rankin is a Competent Person who is a Member (#110551) of the Australasian Institute of Mining and Metallurgy (MAusIMM) and accredited since 2000 as a Chartered Professional (CP) by the AusIMM in the Geology discipline. Robin Rankin provided this information to his Client 3D Resources Limited as paid consulting work in his capacity as Principal Consulting Geologist and operator of independent geological consultancy GeoRes. He and GeoRes are professionally and financially independent in the general sense and specifically of their Client and of the Client's project. This consulting was provided on a paid basis, governed by a (in this case an on-going engagement) scope of work and a fee and expenses schedule, and the results or conclusions reported were not contingent on payments. Robin Rankin has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Robin Rankin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Attn: Mr Peter Mitchell

3D Resources Limited 4/91 William Street Melbourne VIC Australia **Geo**Res PO Box 2332 Bowral NSW 2576 Australia

28th September 2021

Dear Peter

Adelong Gold Project - Currajong / Caledonian / Donkey Hill JORC Gold Resource Estimate - September 2021

This V2 is a re-issue of my Resource report of 18th August 2020 – with the addition of Sections 1 and 2 of the JORC Table 1 and notes highlighting, with reasons, that old mining had not been accounted for (excluded) in the Resources. This Resource estimation used existing (not new) data. That data should all have previously been tabulated in Sections 1 and 2 of a JORC Table 1. As much of the older data (all of that prior to ~2010) had not been tabulated before the Consultant collates all of that past data here (in V4) as it applies to these Resources.

The attached Report summarises my August 2020 JORC Resource Estimates of gold in three of 3D Resources Ltd's (3D or the Company) deposits at the Adelong Gold Project in NSW, Australia (Currajong, Caledonian and Donkey Hill). The Report is brief and in a summary form due to the understood imperative to supply sufficient documentation to back reporting of the Resources in an announcement. As such it does not contain some of GeoRes's standard long-form reporting features (such as a full set of plans and sections). The Report also lacks GeoRes's Consultant Statements Appendix which defines such issues as independence, confidentiality, and validity.

The Report consists of a Project precis, a JORC Table 1, a listing of the drill holes used (Appendix 2), a listing of interpreted vein intercepts (Appendix 3), and a listing of vein model statistics (Appendix 4).

This documentation is specifically directed at the 'estimation' process and results. Other peripheral supporting information regarding the Project (such as location, tenure, geology etc) which should accompany an announcement should be supplied by the Company.

Yours sincerely

Robin A Rankin MSc DIC MAusIMM (CPGeo)¹

Principal Consulting Geologist - GeoRes

R.A. Raulin.

¹ Accredited by The Australasian Institute of Mining & Metallurgy (The AusIMM) since 2000 as a Chartered Professional (CP) in the Geology discipline.

Adelong Gold Project

Currajong / Caledonian / Donkey Hill JORC (2012 Edition) Gold Resources

28th September 2021

V2

Report for 3D Resources Limited

By Robin Rankin MAusIMM CPGeo

> GeoRes Project GR2202

Disclaimer: This Document and any drawings, information and data in it (the Document) is solely for the use of the addressed recipient may not be used, transmitted, copied or reproduced in whole or part for any purpose other than that for which it was supplied by GeoRes. As such GeoRes makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon all or part of the Document.

VERSIONS

- Version 1 18th August 2020 Version 2 14th September 2021
 - o Adds Sections 1 and 2 to JORC Table 1.
 - Clarifies the status of old mining in stating that reported Resources do not exclude old mine voids.
 - V2.2, 16/9/2021: Minor edits in Section 2, JORC Table 1, to remove reference to historical Resource estimates by CEC, MM&S and Pan Aust.
 - V2.3, 28/9/2021: Minor changes to Page 11 including resource categories in Table 3 and deleting reference to historic resource estimates at Donkey Hill

CONTENTS

Versions	3
Contents	4
Figures	
Tables	
Summary documentation – 14 th September 2021	5
Appendix 1 – JORC Code, 2012 Edition – Table 1	
Appendix 2 – Deposit drill hole listing & collar surveys	
Appendix 3 – Drill hole vein intercepts – by deposit	
Appendix 4 – Vein model statistics – by deposit	
Figure 1 Adelong deposits	6 7
Figure 4 Caledonian surfaces	
Tables	
Table 1 Adelong JORC Resources by deposit and class August 2020	9
Table 2 Adelong JORC Resources by vein August 2020	10
Table 3 Currajong Resource reconciliation	11

Adelong Gold Project

Currajong / Caledonian / Donkey Hill Deposits JORC (2012 Edition) Gold Resource Estimates

SUMMARY DOCUMENTATION - 14TH SEPTEMBER 2021

Summary: This document reports Global in-situ gold Mineral Resources in the Currajong, Caledonian and Donkey Hill deposits at 3D Resource Ltd.'s (3D) Adelong Project in southern NSW. The Project comprises the Adelong Goldfield mined underground and alluvially at the beginning of the last century. Resources were estimated from existing exploration data. Reporting used a 1.0 g/t lower gold cut-off and a fixed default density of 2.7 t/m³. Indicated (23%) and Inferred (77%) Resources at Currajong were 533,000 t @ 2.62 g/t (44,800 oz); Inferred Resources at Caledonian were 157,000 t @ 5.94 g/t (30,000 oz); and Inferred Resources at Donkey Hill were 103,000 t @ 5.03 g/t (16,600 oz). Resources do not exclude the relatively minor old underground mine volumes (as not enough detail exists to model them). The combined 16,000 oz of historic production from the three deposits potentially represents ~17% of the 91,400 oz reported here although that may be closer to ~10% as the historic figures apply to deposit extensions not included in these estimates.

Engagement & objectives: GeoRes (through Consultant Robin Rankin)) was engaged by 3D's Peter Mitchell in early 2020 to supply JORC² Mineral Resource Estimates (the Consultant's Project) at 3D's Adelong Project for the Currajong, Caledonian and Donkey Hill deposits (white labels and ovals in Figure 1, 500 m grid lines) from existing drill hole data. JORC Resources had previously been reported for the western part of Currajong. However no Resource estimation existed for the eastern side of Currajong or for Caledonian. A non-JORC rough estimate existed for Donkey Hill. Records of old mining at the three deposits was too scarce to allow their modelling and consequently past production is not excluded from the Resources reported here. GeoRes has worked on Adelong since ~1998 and consequently possessed considerable Project knowledge.

Introduction: The Adelong Gold Project is centred on the Adelong Goldfield which saw historical underground and alluvial mining around the turn of the 20th century. The Goldfield saw total underground gold production of ~380,000 oz of which Currajong, Caledonian and the Donkey Hill Line accounted for ~16,000 oz in total. The deposits in Figure 1 represent a portion of the deposits mined from underground and scattered remnant dumps and shaft platforms are visible in the Figure. In recent times the Project has been explored periodically since the 1980s.

Consultant/CP: Robin Rankin has +30 years' experience as a geologist, the majority of those years also as a JORC Mineral Resource estimator and reporter. He is a Competent Person (CP) according to the JORC Code's requirements, being a Member of the AuslMM, having +5 years relevant experience in the styles of mineralisation, and also being a Chartered Professional in geology as accredited by the AuslMM. As such he is the CP for this Resource estimate. The Consultant's CP Statement and release consent is included, as is a Code Table 1.

Consulting: All Resource estimation work (the Consulting) behind this Statement (the geological interpretation, modelling, data analysis, grade estimation, reporting, and JORC Mineral Resource classification) was performed by the Consultant. All data was either already with the Consultant or was supplied by or on behalf of the Client and was taken at face value. Although the Consultant validated the data to his satisfaction he nevertheless provides this estimate on the basis that his Client takes responsibility for the data integrity.

Figure 1 Adelong deposits

² The JORC Code (2012 Edition), abbreviated as JORC or the Code. Prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy (AusIMM), Australian Institute of Geoscientists (AIG) and Minerals Council of Australia (MCA).

Site visit: The Consultant did **not** visited the Project specifically for this estimate. However he has consulted to all recent Project owners, has visited it many times since 1998, and has gone underground in the adit at Challenger.

Location, tenure & history: Details should be sources from 3D. However in summary the Adelong Gold Project is located immediately north of the small town of Adelong in southern NSW. Historically the area hosted the Adelong Goldfield which produced nearly 1M oz of gold at the beginning of the 19th century from underground and alluvial workings. The Goldfield saw total underground gold production of ~380,000 oz of which Currajong, Caledonian and the Donkey Hill Line accounted for ~16,000 oz in total. Pertinent mineral leases held by 3D are a central Mining Lease (ML 1435) of ~6 km² surrounded by a larger Exploration License (EL 5278) of ~68 km². Also within the EL and just outside the ML exist a number of small Mineral Claim Leases (MCLs). The ML is shown by the red boundary in Figure 1, overlayed on solid shaded topography. Coordinate grid lines are at 500 m spacing, north is to the top.

Geology: The Consultant's Geologist's Report³, contained within the 2016 Macquarie Gold Limited (MGL) IPO prospectus, should be consulted for a full geological summary of the Project area and its gold deposits.

Gold deposits: The Project area covers the heart of the old goldfield and contains numerous deposits which were mined underground. Exploration over the last 25 years focused on the Challenger deposit (labelled in white in Figure 1 and historically called Old Hill) and it was well drilled. However many other nearby deposits were also drilled in limited amounts, and three of these are the subject of this Resource estimation – Currajong, Caledonian and Donkey Hill (labelled in black in Figure 1).

Gold mineralisation: Gold mineralisation is contained in narrow sub-vertical sub-parallel quartz veins hosted in granodiorite. Surface outcrop mapping shows that the veins cluster in groups with a ~350° to 355° orientation. Caledonian and Donkey Hill appear to be along strike of the Challenger deposit, Currajong is on a parallel system ~550 m to the west. Recent high definition geophysical ground mag surveys by MGL highlight these mineralisation directions clearly and formed a backbone to the geological vein interpretation done here.

Data: Drill hole data from all explorers over the last 25 years was collated by the Consultant as part of Resource consulting to them. Data consists of reports; topographical data; mapping data; geophysical maps; and drill hole data. Drill holes were overwhelmingly steeply inclined and oriented ~E/W across the strike of the veins. Drill hole sample data is predominantly of gold at various interval lengths. Drill hole and topography data is in AMG66 coordinates.

Drill hole data: Figure 2 shows traces (thick black lines) of all drill holes in the area shown. Clusters of drill holes exist at the three deposits (green ovals) estimated. A listing of drill holes at the deposits (with their collar surveys) is given in Appendix 2 – Deposit drill hole listing & collar surveys. Holes were predominantly by Reverse Circulation (RC) and Reverse Air Blast (RAB), a far lesser number by diamond drilling.

Currajong: At Currajong 49 holes exist for a total of ~4,360 m (average length ~90 m). Most holes were drilled on a 'Western' set of veins, a lesser number on an 'Eastern' set ~40 m away. A small number of diamond holes were drilled from underground in the Boumoya Adit.

Caledonian: At Caledonian 75 holes exist for a total of ~3,240 m (average length ~40 m).

Donkey Hill: At Donkey Hill 35 holes exist for a total of \sim 3,290 m (average length \sim 90 m). The listing in the Appendix includes closer holes to the south at the Fletchers deposit.

Geological interpretation: The Consultant firmly believes all gold mineralisation encountered is 'narrow sub-vertical sub-parallel quartz vein hosted'. Drill hole assays are either completely barren (noted as blanks, zero or below detection values (typically 0.01 g/t)) or very sharply slightly or

Figure 2 Adelong drill holes

³ Rankin, R., 3 August 2016. Geologist's Report on Macquarie Gold Limited's Tenements at Adelong, NSW, Australia. Report for MGL included within their IPO prospectus lodged with the ASX on 8 August 2016.

highly mineralised (typically >0.2 g/t) with gold over short intervals. The mineralised intervals represent vein intercepts.

Interpretation involved 1) identifying all vein intercepts and then 2) identifying each as belonging to a particular vein. Vein orientations were led by the assumptions (from surface mapping and the ground mag) that they would probably be oriented at 350° to 355°, which proved to be the case. Identification was iterative as the 'main' (generally central) veins were picked up quickly followed by sub-parallel ones either side. A listing of all hole vein intercepts, by vein and deposit, is given in Appendix 3 – Drill hole vein intercepts – by deposit.

Veins interpreted at all three deposits are certainly all **open at depth and generally along strike**. Existing drilling does not close them off.

Currajong veins: Currajong interpretation included a full re-interpretation (refinement) of the western side and new interpretation of an eastern side – a total of 19 sub-vertical (to west) to vertical veins oriented at 355°. The western part previously had 6 veins interpreted named (with domain number assigned): CU_C (6), CU_M (5), CU_A (4), CU_F (3), CU_5 (2) and CU_6 (1) – ordered from west to east. To this was added a new vein on the far west, CUW7 (7). East of the western part a series of 12 new veins were interpreted: CUE8 (18), CUE7 (17), CUE6 (16), CUE5 (15), CUE4 (14), CUE3 (13), CUE2 (12), CUE1 11), CUEM1 (21), CUEM2 (22), CUEM3 (23) and CUEM4 (24)(- ordered from west to east. Peripheral veins, particularly on the east, were encountered in very few holes (4 or less) simply because of hole scarcity.

Caledonian veins: Old drilling at Caledonian had clearly some potential as it had one of the highest grades encountered (117 g/t). The veins interpreted would simply be northern strike extensions of the well modelled Challenger deposit to the south. A total of 20 sub-vertical (to west) to vertical veins oriented at 350° were interpreted: CA09 (9), CA08 (8), CA07 (7), CA06 (6), CA05 (5), CA04 (4), CA03 (3), CA02 (2), CA01 (1), CAM1 (11), CAM2 (12), CAM3 (13), CAM4 (14), cam5 (15), CAM6 (16), CAM7 (17), CAM8 (18), CAM9 (19), CAM10 (20) and CAM11 (21) – ordered from west to east.

Donkey Hill veins: Although the Donkey Hill deposit sits within a roughly circular norite plug the gold mineralisation would appear to be in similarly oriented veins to the rest of the field (implying they cross-cut it later. A total of 4 subvertical (to west) to vertical veins oriented at 355° were interpreted: DH06 (6), DH05 (5), DH04 (4), and DH03 (3) – ordered from west to east.

Geological vein surface modelling: As gold grade mineralisation was clearly fairly linear vein-bound the veins were modelled from the drill hole intercepts as computed DTM gridded surfaces. As they were semi-vertical they were computed relative to a vertical N/S plane located to the west. For each a roof (east side) and a floor (west side) was computed. Grid point interpolation in 3D employed a 'growth' algorithm to best suit realistic geological undulations. A 5*5 m mesh was chosen to adequately represent the typical drill hole spacing (typically 20-100 m). Lateral extrapolation was conservatively restricted to 25 m outside bounding drill holes.

A listing of simple statistics for all vein surface models is given in Appendix 4 – Vein model statistics – by deposit.

Currajong surfaces: Figure 3 shows the more major vein surfaces (coloured vertical lines) at Currajong. 18 of the 19 veins were modelled. The view looks down at 30° towards 355°, and the coordinate grid lines are spaced at 100 m intervals. This end-on view shows the vein verticality and their sub-parallel nature. The 5 thicker veins on the left are at Currajong West. The thinner veins on the right are at Currajong East. The deposit as modelled is ~250 m wide E/W and ~600 m in strike length N/S. Deepest veins extend 300 m below surface.

Currajong West veins averaged 3.2 m in horizontal width and their maximum thicknesses averaged 8.8 m. The thickest vein (CU_M) had a maximum width of 24.0 m and an average of 8.5 m. Currajong West veins were considerably thinner and averaged 1.1 m in horizontal width.

Figure 3 Currajong vein surfaces

Caledonian surfaces: Figure 4 shows the major Caledonian vein surfaces

- looking towards 350°. 14 of the 20 veins were modelled. Veins on the east were particularly poorly supported by drilling. The deposit as modelled is ~200 m wide E/W and ~750 m in strike length N/S. Deepest veins extend 250 m below surface.

Along strike extension/connection to Challenger in the south is seen at the base of the Figure. The green parts of the many drill holes at the base are in the main vein at the northern end of Challenger.

Caledonian veins were fairly thin and averaged 0.9 m in horizontal width with their maximums thicknesses averaging 2.5 m.

Figure 4 Caledonian surfaces

Donkey Hill: Figure 5 shows all of the Donkey Hill vein surfaces - looking towards 000°. All 4 veins were modelled. Veins were generally poorly

supported by drilling. The deposit as modelled is ~200 m wide E/W and ~400 m in strike length N/S. Deepest veins extend 250 m below surface.

Old mining is presumed to have been on the vein shaded grey. It sits closest to the dumps shown on the E/W surface intercept line.

Donkey Hill veins were similar to Caledonian and also fairly thin, averaging 1.3 m in horizontal width with their maximum thicknesses averaging 3.4 m.

Un-folding block grade control: To honour (and subsequently control) grade estimation the observed grade continuity along (in the plane of) veins was implemented though use of a 3D 'unfolding' block model built within the vein surfaces. Bock sizes were 5*5 m in long-section (N/S) and dynamically of the order of 1 m across-strike (E/W)

Figure 5 Donkey Hill surfaces

Grade block estimation: Gold grades were estimated by

deposit into blocks using an un-folding block model to dynamically trend grades along the sub-vertical planes of veins. For reporting the un-folded block grade models were regularised into orthogonal block models with blocks sizes 1 * 5 * 5 m. Grade estimation was performed in a single pass using the simple Inverse Distance squared (ID2) algorithm. Across strike (E/W) a distance weighting of 2 was applied to decrease across-strike continuity. The un-folding control also inherently applied greater continuity along the veins rather than across them. A maximum scan distance of 50 m was used. No data cutting or clipping was used. Low values had effectively been clipped out by the vein interpretation; and high grades were deliberately left in to simulate expected high grade pods (even though numerically they were numerically diminished. A second round high grade specific interpolation was not considered necessary.

Old underground mining: Records of old mining at the three deposits was too scarce to allow their modelling and consequently past production is not excluded from the Resources reported here. Past collation of old underground gold production records gave:

Currajong 6,000 oz (190 kg) Caledonian 2,000 oz (54 kg) Donkey Hill + extensions 8,000 oz (254 kg)

The Donkey Hill figure included along-strike extensions (Lady Clare to the north and probably Fletchers to the south) which are not included in these Resources.

JORC (2012 Edition) Resource classification: The Consultant considers that the deposit for which Resources have been estimated in the past, Currajong West, should as before be predominantly classified as Inferred – a

classification for a Mineral Resource for which *quantity and grade may be estimated from 'limited' geological evidence and sampling.* However a lesser portion should also be classified as Indicated – a classification for a Mineral Resource for which *quantity, grade (or quality), densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.*

The Consultant considers that all newly estimated Resources (Currajong East, Caledonian and Donkey Hill) should be classified as Inferred.

Here the Indicated classification at Currajong West applies to contiguous areas with close spaced drilling (effectively <20 m). It takes into account the old mining history, a fairly tight drill hole pattern with clear continuity of grades between holes, geological continuity with mapped surface outcrops, the presence of an adit into the deposit, and the fact that some drilling was done from the adit into visual veins.

Classification support. As this Resource is predominantly classified as Inferred the Code requires specific details to support the classification and allow an appreciation of the risk of the estimate. Those supporting details are:

- All documented geological evidence and data implies grade continuity between drill holes.
- The low Inferred classification is chosen predominantly as that continuity has not yet been sufficiently
 verified. Here the CP asserts that he has little doubt (supported by the extensive mining on many of the
 modelled veins) that the continuity would be very quickly and predominantly illustrated and proved (and little
 doubt extended) by a regular close-spaced drilling program.
- Additional factors in the low classification is the lack of (or documentation of) density data, mineralogical data (material physical properties generally) and metallurgical data.
- The vein style interpretation is supported by the shape and style of all old mines within the area.
- Confidence is held for the high probability of increasing the Resources as many holes were not drilled deep enough within the modelled area or were not drilled with a concept of intercepting veins which have now been interpreted. This confidence is further bolstered by the clear potential to extend the models laterally along strike.

Extrapolation: Effectively very little grade interpolation or extrapolation has been done beyond drill holes or internally over distances greater than the average drill hole spacing. Vein surface models were only interpolated 25 m outside drill hole data. And internally the deposits did not contain data holes.

Reporting: Reporting of Resources from the block models incorporated the following details:

- Density: As no density data was available a default density of 2.7 t/m³ was applied to derive tonnages. This default value has been employed at the Prospect for +20 years and approved by multiple consultants.
- Grade cut-offs: A principal lower gold grade cut-off of 1.0 g/t has been used in reporting. This low value is justified as being conservatively in line with other similar gold deposits in Australia.

Mineral Resources: Global in-situ JORC (2012 Edition) Indicated and predominantly Inferred Mineral Resources of gold at the Currajong, Caledonian and Donkey Hill deposits at the Adelong Gold Project are summarised by deposit and Resource class in Table 1 as at August 2020. They were reported above a lower gold cut-off of 1.0 g/t and used a fixed default density of 2.7 t/m³. Tonnage and ounce rounding may introduce minor summation errors. NB: These Resources have not excluded old underground mining volumes.

Table 1 Adelong JORC Resources by deposit and class August 2020

ADELONG - JOH	ADELONG - JORC Resources - 13 August 2020 - Density 2.7 t/m ³					
		Resource	Au cut-off	Tonnes	Au	Au
Area		class	(g/t)	(t)	(g/t)	(oz)
Currajong West	t	Indicated	1.0	126,000	2.57	10,400
	_	Inferred	1.0	339,000	2.64	28,800
		Ind+Inf	1.0	465,000	2.62	39,200
Currajong East	_	Inferred	1.0	68,000	2.58	5,600
Currajong	49%	Ind+Inf	1.0	533,000	2.62	44,800
Caledonian	33%	Inferred	1.0	157,000	5.94	30,000
Donkey Hill	18%	Inferred	1.0	103,000	5.03	16,600
Total	' <u>-</u>	Ind+Inf	1.0	793,000	3.59	91,400
Total	11%	Indicated	1.0	126,000	2.57	10,400
	89%	Inferred	1.0	667,000	3.78	81,000
		Ind+Inf	1.0	793,000	3.59	91,400

Detailed deposit reporting by vein is given in Table 2.

Table 2 Adelong JORC Resources by vein August 2020

CUW7 7 Indicated 1.0 CU_C 6 Indicated 1.0 CU_M 5 Indicated 1.0 CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 CUW7 7 Inferred 1.0	Tonnes (t) CUR2_WES 9,000 86,000 5,000 25,000 1,000 126,000	1.15 2.00 2.12 3.99 4.15 1.05	Au (oz) 600 5,900 600 3,300
Currajong - WEST (re-estimate of old area): CUW7 7 Indicated 1.0 CU_C 6 Indicated 1.0 CU_M 5 Indicated 1.0 CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 CUW7 7 Inferred 1.0	9,000 86,000 5,000 25,000	1.15 2.00 2.12 3.99 4.15 1.05	600 5,900 600
CUW7 7 Indicated 1.0 CU_C 6 Indicated 1.0 CU_M 5 Indicated 1.0 CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 CUW7 7 Inferred 1.0	9,000 86,000 5,000 25,000	1.15 2.00 2.12 3.99 4.15 1.05	5,900 600
CU_C 6 Indicated 1.0 CU_M 5 Indicated 1.0 CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 CUW7 7 Inferred 1.0	86,000 5,000 25,000 1,000	2.00 2.12 3.99 4.15 1.05	5,900 600
CU_M 5 Indicated 1.0 CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 CUW7 7 Inferred 1.0	86,000 5,000 25,000 1,000	2.12 3.99 4.15 1.05	5,900 600
CU_A 4 Indicated 1.0 CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 27% Indicated 1.0 CUW7 7 Inferred 1.0	5,000 25,000 1,000	3.99 4.15 1.05	600
CU_F 3 Indicated 1.0 CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 27% Indicated 1.0 CUW7 7 Inferred 1.0	25,000 1,000	4.15 1.05	
CU_5 2 Indicated 1.0 CU_6 1 Indicated 1.0 27% Indicated 1.0 CUW7 7 Inferred 1.0	1,000	1.05	3 300
CU_6 1 Indicated 1.0 27% Indicated 1.0 CUW7 7 Inferred 1.0			5,500
27% Indicated 1.0 CUW7 7 Inferred 1.0			400
CUW7 7 Inferred 1.0	126 000	1.65	100
	120,000	2.57	10,400
	44.000	1.21	2 200
CU_C 6 Inferred 1.0	44,000	1.59	2,200
CU_M 5 Inferred 1.0 CU_A 4 Inferred 1.0	147,000	1.81	8,600
CU_A 4 Inferred 1.0 CU_F 3 Inferred 1.0	80,000 55,000	3.34 4.53	8,600
CU_5 2 Inferred 1.0	1,000	4.33 1.31	8,000
CU_6 1 Inferred 1.0	13,000	4.25	1,800
73% Inferred 1.0	339,000	2.64	28,800
88% Ind+Inf 1.0	465,000	2.62	39,200
	CUR2_EAS		39,200
CUE8 18 Inferred 1.0	OUNZ_EAU	2.84	
CUE7 17 Inferred 1.0	9,000	5.45	1,600
CUE6 16 Inferred 1.0	0,000	0.10	1,000
CUE5 15 Inferred 1.0			
CUE4 14 Inferred 1.0	6,000	1.22	200
CUE3 13 Inferred 1.0	19,000	2.42	1,500
CUE2 12 Inferred 1.0	. 5,555	1.57	.,000
CUE1 11 Inferred 1.0	7,000	2.34	600
CUEM1 21 Inferred 1.0	•		
CUEM2 22 Inferred 1.0	10,000	1.51	500
CUEM3 23 Inferred 1.0	17,000	2.38	1,300
13% Inferred 1.0	68,000	2.58	5,600
Currajong 49% Ind+Inf 1.0	533,000	2.62	44,800
Caledonian:	CAL2.G3*		
CA08 8 Inferred 1.0	8,000	1.13	300
CA07 7 Inferred 1.0	54,000	10.62	18,400
CA06 6 Inferred 1.0			
CA05 5 Inferred 1.0			
CA04 4 Inferred 1.0	6,000	1.87	300
CA03 3 Inferred 1.0	27,000	2.68	2,300
CA02 2 Inferred 1.0	13,000	3.33	1,400
CAM1 1 Inferred 1.0	10,000	1.62	500
CAM2 11 Inferred 1.0	21,000	1.58	1,100
CAM2 12 Inferred 1.0	12,000	11.23	4,400
CAM3 13 Inferred 1.0 CAM4 14 Inferred 1.0			
CAM9 19 Inferred 1.0			
CAM11 21 Inferred 1.0	6,000	5.85	1,200
Caledonian 33% Inferred 1.0	157,000	5.94	30,000
	DH2.G3*	J.J7	50,000
DH06 6 Inferred 1.0	D112.00		
DH05 5 Inferred 1.0	34,000	2.23	2,400
DH04 4 Inferred 1.0	54,000	7.76	13,500
DH03 3 Inferred 1.0	15,000	1.47	700
Donkey Hill	103,000	5.03	16,600
Total Inferred 1.0	793,000	3.59	91,400

Resource reconciliation: Reconciliation with past production: The combined 16,000 oz of historic production from the three deposits potentially represents ~17% of the 91,400 oz reported here although that may be closer to ~10% as the historic figures apply to deposit extensions not included in these estimates.

Currajong Resource reconciliation: Table 3 sets out a comparison between the 2005 overall Resource reported for Currajong (effectively the West side) and the new 2020 Resource. The new 2020 Resource is greater by 195 kt. Of that 68 kt can be accounted for as part of the deposit (the eastern side) was not previously estimated. The balance of the difference is put down to the 2020 estimate having access to more holes than before (with extended strike and depth) and to enhanced modelling techniques (the un-folding).

Table 3 Currajong Resource reconciliation

Adelong - Currajong Resource comparisons - 13 August 2020 - Density 2.7 t/m ³					
Area	Resource class	Au cut-off (g/t)	Tonnes (t)	Au (g/t)	Au (oz)
Currajong 2005	Indicated	1.0	106,000	2.42	8,200
Currajong 2005	Inferred	1.0	292,000	3.97	29,600
Total Currajong - 2005	Ind+Inf	1.0	338,000	3.48	37,800
Currajong 2020	Indicated	1.0	126,000	2.57	10,400
Currajong 2020	Inferred	1.0	407,000	2.63	34,400
Total Currajong - 2020	Ind+Inf	1.0	533,000	2.62	44,800
Difference:		_	195,000	•	7,000
NB Figures Rounded			58%		19%

Caledonian and Donkey Hill Resource reconciliation: Effectively there are no previously reported Resources for these deposits.

Competent Person Statement:

Source data: All source data in the Consultant's possession was originally taken at face value by the Consultant. The Consultant performed validation of the drill hole data to the extent thought possible, and believes that validation to at least be to the level required for JORC Resource estimation and reporting. Although the Consultant validated the data to his satisfaction he nevertheless provides this Resource estimate and the following Competent Person Statement for it on the basis that i) the Client takes responsibility to a Competent Persons level for the integrity of the source data and ii) that it partly uses historical descriptive data which cannot be physically validated to the same degree as recent data.

Statement. The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Robin Rankin, a Competent Person who is a Member (#110551) of the Australasian Institute of Mining and Metallurgy (MAusIMM) and accredited since 2000 as a Chartered Professional (CP) by the AusIMM in the Geology discipline. Robin Rankin provided this information to his Client 3D Resources Limited as paid consulting work in his capacity as Principal Consulting Geologist and operator of independent geological consultancy GeoRes. He and GeoRes are professionally and financially independent in the general sense and specifically of their Client and of the Client's project. This consulting was provided on a paid basis, governed by a (in this case very generalised) scope of work and a fee and expenses schedule, and the results or conclusions reported were not contingent on payments. Robin Rankin has sufficient experience that is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person (CP) as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Robin Rankin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Validity: This Statement will be become invalid, and all consents withdrawn, if consulting fees are outstanding for an unreasonable period (taken here to be more than a month after the date on the introductory letter). This general consent may be subordinated by specific consent details agreed with the Client.

APPENDIX 1 – JORC CODE, 2012 EDITION – TABLE 1

Sections:

- Sections 1 (sampling techniques and data) and 2 (exploration results) of JORC Table 1:
 - These Sections were not contained withing the original August 2020 report.
 - o Reasons given then for their absence revolved around previous reporting in 2016 as part of an IPO document for Macquarie Gold Limited.
 - All references to that 2016 reporting may now be ignored.
 - Table 1 here now includes new Sections 1 and 2 which fully detail all known exploration and sampling on the Currajong, Caledonian and Donkey Hill deposits at Adelong. They also detail related peripheral deposits as most exploration was done on an Adelong Project scale. Aspects have been abstracted or adapted from Sections 1 and 2 in the 2016 report mentioned above.
 - o The Consultant is unaware of any exploration since August 2020 on the particular deposits reported here. Statements on any subsequent exploration activity and data collected since August 2020, as it would relate to these Resource estimates, should be sought from the Company (3D Resources Ltd).
- Section 3 (estimation and reporting of Mineral Resources) of JORC Table 1:
 - o Section 3 applies to new Resource estimation on the Currajong, Caledonian and Donkey Hill deposits at Adelong.
 - o Aspects have been abstracted or adapted from Section 3 in the 2016 report mentioned above.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

	Criteria in this section apply to all succeeding sections.)				
Criteria	JORC Code explanation	Commentary			
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Partly historical: Sampling prior to the Consultant's first involvement in the Project in ~1995 was historical and therefore not observed. Documentation for the historical sampling is poor and the Consultant initially (~1995) relied on the Project geologist for opinions and details of historical sampling. All indications of the historical sampling were that it was "industry standard" for the time, that it was administered by geological professionals, and that it was mostly collected by well-known, respected and experienced explorers. Subsequent to ~1995 the Consultant was generally in close consultation with Project geologists operating the field exploration programs. Except in one small instance for MGL the Consultant was NOT present during sampling. Sampling: Style of mineralisation being sampled: Exploration was aimed at finding gold mineralisation in narrow sub-vertical quartz veins striking ~N/S set in granodiorite country rock. This exploration was following known mineralisation mined underground earlier in the century (underground mining in the Gold field commenced in the late 1800s and ended in ~1910). Objective & concept: The objective of all modern exploration since approximately the mid-1970's has been to delineate the narrow gold veins (frequently with little actual surface outcrop) principally through drilling and sampling closely spaced 'fence lines' of holes across the vein strike indicated by the pits and shafts left by the old underground mining. Source & method of sampling: Virtually all samples (certainly all of those used for Resource estimation) were from drill holes. Sampling varied for the types of drilling, over time and between different drilling contractors. A very small proportion of samples were from surface costeans (trenches), outcrop rock chips, and u			

Criteria JORC Code explanation	Commentary
	most sampling for assaying was only done for intervals considered to be mineralised or potentially mineralised (effectively vein samples). • Diamond drill holes: Drill core was placed in trays by the drillers. Based on visual geological logging most sampling was only done for intervals considered to be mineralised or potentially mineralised (effectively vein samples). For those intervals the core was split with one part stored and the other part processed for assaying (either on-site or by the laboratory). • Underground: Face channel samples were taken underground in the Challenger Adit (understood to by Adelong Capital (AC). Details were not available. Sample assay data exists but was not used in the recent Resource estimation. • Costean sampling: No details of this was available and no data is held. • Quality: Sample quality varied by drilling method with RAB assumed to be lowest quality and diamond coring the highest. However it is assumed that quality varied over time and between different drilling contractors and field staff. • Sampling representivity: • As all down-hole sampling was based on short intervals (a sub-set of 6 m drill rod lengths, being 1, 2 or 3 m lengths) and continuous sampling (without breaks) the sampling is considered to be highly representative of the rock considered to be mineralised in cross-section (here EW). Representivity in long section (here EW). Representivity in long section (here INS) was reasonably assured by close-spaced sections and holes designed to intersect the veins at multiple depths on section. • However the relatively small diameter of all drilling (typically <10 cm) would introduce an element of doubt of true representativity of typically highly variable vein mineralisation over short distances (<1 m). • And the common practice at Adelong of only sampling those intervals visually considered mineralised implies that considerable portions of country rock assumed to be barren has not been proved. • ECSI's 2000° opinion was that CEC's early (1979-82) samplin

⁴ Pp17. Rankin et al, June 2000. *Independent Geological Report.* By ECS International for Adelong Capital Ltd.

Criteria	JORC Code explanation	Commentary
		 would assist in quantifying the reliability of sample or assay results. Under-calling gold grade: Various Consultants have consistently observed that it seems likely that drill hole assays under-call the actual vein gold grades when compared against the historical high mine production grades. Pan Aust's 1989 Challenger Adit bulk sample average grade (5.6 g/t) was significantly higher than drill hole grades in the vicinity of the Adit and they concluded that drill holes may have under-sampled Adelong gold mineralisation by as much as 50%. ECSI's 2000 opinion however noted that the Adit sampling should be treated with caution as it represented a small portion of the deposit and may not be representative. GCR and possibly more so MGL made concerted efforts to determine the most accurate assay methods for Adelong 'ore' grade samples. They both concluded that if a sample indicated virtually any gold mineralisation that it was better assayed with a longer duration acid digestion method. Mineralisation identification: Determination of gold mineralisation in all drilling was visually made during geological hole logging. Principal indicators were typical veins minerals (particularly massive quartz), sulphides and occasionally gold itself. Identification was considered accurate with diamond drill core. Identification was considered far less so with RAB/RC chips, which was catered for by sampling adjacent intervals to some degree. Mineralisation was assumed to be reliably determined by assay results. Assay results precipitated assaying of some intervals previously not considered mineralised. "Industry standard": Sampling of the RAB/RC and diamond drilling programs is considered to have been (noting comments on time-based representivity above) of "industry standard" for gold exploration.
Drilling techniques	 Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Drilling methods variously employed over time were: RAB – rotary air blast (down-hole hammer) open hole (single tube) method. RC – reverse circulation method to provide cased (twin tube) sample collection for accurate depth sampling and sample contamination minimization. Typically 6 m rods, ~140 mm diameter holes. Diamond coring (triple tube). Details on core orientation work not available. Blast hole – shallow air blast (top-hole hammer) open hole method. Typically 3.6 m rods, ~102 mm diameter holes. Underground face channel sampling – specific details not available. However the sampling was along continuous channels separated into fixed sample lengths. Separate channels sampled across the ore body in the section of the Adit which

Criteria	JORC Code explanation	Commentary
		 drove along the hanging wall and footwall lodes. Channels were also sampled along the drives and along parts of the decline. Early databasing of this data treated the sample strings as pseudo drill holes located by the Adit surveys. Drill hole down-hole survey: All RAB/RC and diamond hole tracks were surveyed using down-hole instruments. Casing: All holes were drilled un-cased with the great majority using a short temporary section of casing at surface to prevent hole collapse. Subsequently the temporary casing was generally removed and the hole collar rehabilitated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery overall comments: Sample recoveries overall were poorly recorded over time and varied between Project operators and between programs. This opinion largely derives from the limited documentation now available. However overall sample recovery was considered very good over the Project as the granodiorite country rock was very hard, competent and tight giving little opportunity for hole collapse or sample loss. Except for the valley bottom (Caledonian, Fletchers and to some degree Victoria) ground water generally posed no threat to sample recovery. Recovery was hampered where drilling encountered underground voids, whether dry or wet. No recovery data exists in the Consultant's drill hole database as it was never provided. That does not necessarily imply that the data was not originally recorded. Recovery assessment: Diamond core drilling recovery: All diamond holes were drilled before ~2000, were essentially historical to the Consultant, and core treatment details were scant. Core recovery was determined by recording the length of core against the drill rod length. It is understood that core drilling could usually bridge across narrow underground mining voids. RC drilling recovery:

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Recovery maximisation/representivity measures: Close geological supervision during drilling. Reasonably short sample intervals (producing manageable weight samples which were easier to assess). Continuous sampling. Sampling according to geology (i.e. not sampling across rock type breaks). Use of competent drillers. Use of RC drilling – which inherently ensures good sample recovery and limitation of sample contamination. With RC/RAB use of drilling rigs with sufficient compressed air capacity to easily lift drill cuttings. This capacity was apparently somewhat lacking in the limited drilling done by Tasman Goldfields in 2007-9, hence the short holes. Recovery/grade relationship & sample material bias: As no recovery was measured (reasons above) it could not be compared with grade. In any event any relationship would have been very difficult to determine as the number of 'mineralised' intervals was very small compared to the total number of intervals (typical of the narrow vein style of mineralisation). Sample bias due to grain size was completely absent for the core drilling. Bias was minimised during RC drilling by the continuous use of cyclones (to remove the air) and catching all of the sample (i.e. all grain sizes), albeit a split fraction. Logging and adequacy: Geological logging was performed on all holes. Not all logs were available and no logging data exists in the Consultant's drill hole database as it was either never provided or simply (mostly) not available digitally. The Consultant has not seen any detailed log reports. Logging was aimed at characterising the geology sufficiently and particularly towar
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation 	 Percentage logged: Logging aimed to represent 100% of drilled intersections. Sub-sampling overall comments: The large number of explorers using varied drilling and sampling techniques implies sub-sampling on the Project would have varied over time. However the Consultant believes all used generally "industry-standard" methods and observes that results of different programs do not appear to have produced noticeable differences.

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Far greater differences would have arisen due to differing sample analytical methods. Core sub-sampling: Core samples were split into regular down-hole interval lengths. Core was then also sawn in half lengthways with one half retained and the other sent for analysis. Subsequent re-sampling saw core sawn into quarters, and so on. Chip sub-sampling: Chip samples were divided into regular down-hole interval lengths during drilling. A portion (fraction) of the full interval sample was obtained directly from a sample splitter on or below the cyclone. The portion was bagged. Typically the split fraction was approximately an 1/8th, designed to give a ~2-3 kg sample. With RAB shallow blast hole drilling (the MGL 2011 program) the sample combined the fraction from the coarse cyclone with a fraction from the separate dust cyclone (ensuring fines were collected). Sampling was performed both wet and dry. When wet sampling usually became more difficult. Then full samples typically would be collected in a large bucket or barrow below the cyclone, with the bagged sample collected by hand or spade from the bucket/barrow. This manual collection usually aimed to collect a similar volume to dry samples and grabs would be made at different depths in an effort to maintain representivity. Appropriateness of methods: Consultant believes all sub-sampling methods were "industry-standard" and therefore fully appropriate for sampling on the Project. QC measures to maximise representivity: Described above with recovery maximisation and representivity. QC was also monitored through the duplication of samples (see below). Sampling representivity measures: <
Quality of	The nature, quality and appropriateness of the	Assay method and appropriateness:

Criteria	JORC Code explanation	Commentary
assay data and laboratory tests	assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Laboratories: All Project operators used commercial assaying laboratories. Details are lacking of which labs were used before ~2010. After 2010 MGL used ALS (NATA certified) in Orange, NSW. Analytical methods prior to ~2010: Details are missing, but are known to be generally the same as described below. Analytical methods since 2010 (MGL): Samples were submitted to ALS and analysed in batches. All samples were run through ALS's standard sample preparation procedures for assaying by AAS. In 2013 the 1,528 samples are weighed upon receipt, dried for 24 hours, and whole samples pulverised to 85% passing 75 microns. 30 g assay charges were then extracted from a 100 g pulp and fire assayed for gold with an AAS analysis (ALS method Au-AA25) and assayed for a suite of 35 other elements by aqua regia digestion and ICP/AES analysis (ALS method ME-ICP41). The gold lower detection limit was 0.002 ppm. Selected mineralized samples (275) were re-submitted for gold analysis of 500 g splits by full cyanide bottle roll digestion (method Au-CN11). ALS QC: The laboratory carried out internal QC, which included the insertion of certified reference standards and duplicates on a sample batch basis. These results were supplied with the assay results. Geophysics: Not necessary and none undertaken. Hand-held XRF tools have not been used on the Project to date. GC – duplicate assays: Prior to ~2010: Details are missing but it is known that to check lab assay results the explorers routinely submitted sample duplicates, blanks and standards and analysed the results. In 2011 (
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry 	 Independent verification of significant intersections: Significant (gold mineralised) intervals were very sparse by the location nature, so verification by any means was effectively impractical. Twinned holes: No program specifically twinned any holes.

procedures, data verification, data storage (physical and electronic) protocols. • Discuss any adjustment to assay data. • However a handful of holes were effectively twinned by later programs drilling a number of holes very close to existing holes. Most mineralised intercepts correlate well, thus partly confirming their representivity. • Primary data documentation, entry, verification and storage: • Most drill hole field data (collar positions, down-hole surveying, sample assays, an mineralised intercept interpretations) since ~2005 has been computerised into MS spread-sheet form. • Geological logging has not been computerised. • Adjustment of assays: • No adjustment of assay data has occurred (other than for non-numeric values) • Detection limits: • Assay lower detection limits have become lower over the Project time. • Where marked as such with non-numeric text (such as "less then x" or " <x") (implying="" (intervals="" 0.002="" 2013.="" 2018="" a="" accurately="" adata="" adjustment:="" analysis="" and="" assay="" assay).="" assay.="" assays,="" assigned.="" been="" being="" by="" consistently="" create="" data="" detailed="" detection="" did="" different="" dup<="" duplicate="" duplicated="" e-estimation="" early="" erroneously="" estimation.="" evaluate="" for="" generally="" gold="" grade="" had="" handle="" have="" identified="" if="" in="" included="" instances="" intervals="" labelle="" limit="" methods)="" mineralised="" more="" most="" no="" not="" null="" objective="" of="" or="" possible="" ppm.="" proportion="" re-estimation="" reliable="" resources="" revelse="" sample="" sampled="" sampled:="" set="" sometimes="" study="" th="" the="" there="" those="" to="" total="" used="" values="" was="" were="" where="" which="" with="" zero="" zero.="" •=""><th>riteria</th><th>JORC Code explanation</th><th>Commentary</th></x")>	riteria	JORC Code explanation	Commentary
androv raiaed the door values of modified assayed intervals		procedures, data verification, data storage (physical and electronic) protocols.	 However a handful of holes were effectively twinned by later programs drilling a number of holes very close to existing holes. Most mineralised intercepts correlat well, thus partly confirming their representivity. Primary data documentation, entry, verification and storage: Most drill hole field data (collar positions, down-hole surveying, sample assays, at mineralised intercept interpretations) since ~2005 has been computerised into MS spread-sheet form. Geological logging has not been computerised. Adjustment of assays: No adjustment of assay data has occurred (other than for non-numeric values Detection limits:

Criteria	JORC Code explanation	Commentary
	drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control.	 Drill hole collars prior to 2010: It is understood that all hole collars were picked up by licensed surveyors. Drill hole collars 2011 to 2013: All hole collars picked up with hand-held GPS by the Consultant. The XY accuracy was +/- 2 m. The Z values were only accurate to +/- 10 m and hence hole elevations were taken from topography data. All holes were tested to be located correctly with respect to other mapped topography and to cultural features. Down-hole surveys prior to 2010: Most drill holes (all longer ones and all diamond holes) were down-hole surveyed at regular intervals. Down-hole surveys 2011 to 2013: This was un-necessary with the short holes. Coordinate grid system: All project data coordinates have been in the AMG 66 system (also known as AGD66 or AGD84). This was maintained (even for the 2011 and 2013 drilling) for consistency between successive programs. The intention is to convert all data concurrently to the current MGA system. Topography: Surface topography mapping is considered highly accurate. The fine-scale data was collected with helicopter by GeoSpectrum in 2002 (organized by AC). Comparison of drill hole collars with topo locations is logical and close. Hole collar elevations have partly been taken from topography.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole data spacing: Drill holes prior to ~2010: N/S spacing (~ strike direction): The great majority of drill holes were drilled on vertical E/W cross-sections spaced 20 m apart N/S. E/W spacing (across strike direction): Virtually all holes were drilled steeply inclined, the great majority (and all at Challenger) towards the east. Collars tended to be spaced ~20 m apart E/W, but the hilly topography played a part in actual spacing by dictating possible practical drill pads. In places multiple holes were drilled from the same location, each with slightly different inclinations to achieve fairly even spacings at depth. Vertical spacing (down dip direction): Combining the ~20 m E/W hole spacing with the steep inclinations gave approximate vertical spacing of ~20-30 m. Down-hole sampling intervals were typically 1 m. 2011 MGL drill holes (Caledonian): 34 short (20 m) blast holes were drilled over 4 ~E/W cross-section lines spaced ~50 m apart N/S. Holes were drilled to form a "fence" to ensure intersecting any semi-vertical reef. Holes were thus inclined to the E (60°), parallel, and 10 m apart. Down-hole sampling interval was 1.8 m (half a blast hole rod).

Criteria	JORC Code explanation	Commentary
		 2013 MGL drill holes (Donkey Hill, Fletchers, Caledonian, Currajong and Victoria North): 12 RC holes (average depth ~125 m) drilled over 11 ~E/W cross-section lines — generally 1 hole per line. Distances between lines was not relevant as the program was aiming to simply test mapped vein intersections at depth. Holes were all inclined (~50° to 60°) to the E or W and positioned to intersect reefs at moderate depth (50-100 m). Down-hole sampling interval was 1.0 m. Data distribution adequacy wrt grade estimation & classification: Given: Individual mineralised sub-vertical veins at Adelong have been mined, mapped and interpreted over >400 m strike lengths and >250 m vertical depths. Typical horizontal across-strike widths are in the approximate range 2-20 m. Opinion: The Consultant's views are that (for all deposits except Gibraltar):
Orientation	Whether the orientation of sampling achieves	Data orientation adequacy wrt structure:

⁵ Rankin, R., December 2010. *Adelong – a geostatistical analysis of the Challenger Gold Deposit.* Report by GeoRes for Somerset Mining.

Criteria	JORC Code explanation	Commentary
of data in relation to geological structure	unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Given (all deposits except Gibraltar): Veins typically have an ~N/S strike, a vertical or very steep westerly dip, and horizontal ~E/W across-strike widths of 2-20 m. These directions and dimensions are clearly visible in the Challenger Adit and elsewhere. At Gibraltar the veins are oriented ~050°. Drill holes from surface were typically drilled steeply inclined E (or to a lesser extent W) and sampled continuously (in vein zones) at short intervals (1 m). Within the Boumoya Adit at Currajong the holes were drilled at a variety of azimuths and dips. Opinion: The Consultant considers that the surface drilling orientation and fine downhole sampling interval lengths achieves unbiased sampling of the sub-vertical vein structures by being across-strike of the veins and as close as practically possible normal to the sub-vertical vein dip. Underground at Currajong some holes could be drilled horizontally and therefore very close to normal to the vein dip. Qualifiers: Although cross-cutting dykes (not N/S) have been noted in past mining virtually no drilling has ever been done that in not ~E/W (with the exception of Gibraltar). Although this is a directional bias the great mass of drilling and mining would appear to make this bias irrelevant. Sample orientation bias - none: As described immediately above the Consultant considers that the drilling orientation did not introduce a sampling bias of the mineralised veins.
Sample security	The measures taken to ensure sample security.	 Sample security: Drill holes prior to ~2010: The Consultant is unaware of the sample security measures. Drill holes since 2010:
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Audits of past drilling: The Consultant is generally unaware of audits or reviews of Project drill hole sampling techniques and data (except where mentioned in Section 2 below). However several operators re-sampled the old dumps and compared their results with earlier ones. The Consultant has not sighted any reporting on this. As the Project moved through a series of operators it is likely that drill hole samples were audited to some degree, probably by re-assaying. It is known that drill core was re-assayed to an extent.

Section 2 Reporting of Exploration Results

(Criteria listed i	n the preceding section also apply to this section.)	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 Mineral tenement status: Qualifier: Whilst the following tenement details represent the Consultant's understandings he nevertheless states that he has not verified them recently and they should be confirmed by the 3D Resources (the Company). Ownership: The Consultant believes that the Company acquired the Adelong tenements as part of its acquisition of the previous owner, Macquarie Gold Ltd (MGL). The Consultant is not aware of the details of the acquisition. MGL's title was confirmed by tenement specialists for the Consultant's 2012 EGR report to MGL. The Consultant is not aware of any subsequent changes to that title. Tenements: Previously MGL owned (through Challenger Mines Pty Ltd (CMPL)):
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Previous mining and exploration: Adelong is a historic mining area (the Adelong Goldfield was mined underground and alluvially between ~1852 and ~1940). It has seen numerous eras of mineral exploration since mining ceased. Past explorers: The Project has had multiple owners and explorers in the modern era since 1979. Those between 1979 and ~1994 were pre-JORC. Carpentaria Exploration Corporation (CEC, 1979-82): Initially their focus was on proving underground gold Resources (predominantly on the Old Hill line and Challenger), but low drill hole grades shifted their focus to proving open-cuttable Resources (as illustrated by their use of a low gold cutoff grade (0.5 g/t) for reporting). CEC made in-house Resource estimates and their eventual decision was that their open-cut potential was insufficient.

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	CEC also made in-house estimates of material in the old dumps. Mineral Management & Securities (MM&S, 1982-5): Their focus appeared to be proving underground gold Resources (based on their use of a high gold cut-off grade (4 g/) for reporting) by drilling. Focus was mostly on Challenger with lesser focus on Caledonian and Currajong. Pan Australian Mining (Pan Aust, 1985-9): Their focus initially was on shallow open-cuttable mineralisation. Exploration drilling was spread fairly widely over most reefs (Challenger/Our Own, Caledonian, Victoria, Currajong, Gibraltar and Dyke). Ultimately their opinion was that the likelihood of economic open-cuttable Resources were low. However they revisited the possibility of underground Resources by sinking a decline at Challenger (see below) to demonstrate gold mineralisation continuity. The decline was done in a JV with the NSW Government Insurance Office. Republic Minerals Corporation (RMC, ~1991). Mining Management Services (MMS, ~1994). Focus was on alluvial/colluvial potential. (Expenditure 1979 to 1996 was estimated to total ~\$3M. Adelong Consolidated Gold Mines / Adelong Capital (AC,1996-2000). AC undertook the first considerable exploration in the JORC era. This initially involved collation of all past data and computerisation of parts. AC looked at and drilled most deposits, undertook soil geochemical sampling, and commissioned geophysical surveys. The Consultant was engaged to estimate and report Resources at Challenger and Currajong. As at February 2000, using a 1.0 g/t cut-off, in-situ JORC Resources were: Challenger: 796,000 t @ 3.0 g/t (Indicated + Inferred) Currajong: 207,000 t @ 2.7 g/t (Inferred) Challenger: 56,000 t @ 1.7 g/t (Inferred) Challenger the Indicated portion of Resources lay above the 1,370mRL in a zone of dense drilling and where assaying had been predominantly by bottle roll. The Inferred material was at the peripheries and below the 1,370mRL where drilling was less dense and older (CEC).
		 (excluded) as well as the mineralised filled voids (given a low density of 1.5 t/m³). Project development activities included:
		 Incomplete preparation for a gravity/CIP plant. Commissioning a technical audit by Metplant Engineering Services in 1999.

Criteria	JORC Code explanation	Commentary
Списпа	- Sorte code explanation	 Entered into an agreement with Adelong Quarries to excavate a portion of over-burden above Challenger (west of the main lode). Obtaining the granting of ML 1435. Signing an indigenous Land Use Agreement with the local community (believed to be the first in NSW). Expenditure by AC was estimated to total ~\$5.2M (~\$3.7M on exploration, ~\$1.5M on development). Golden Cross Resources (GCR, 2000-7). As at July 2005 in-situ Resources using a 1.0 g/t cut-off were: Challenger: 930,000 t @ 2.74 g/t (Indicated + Inferred) Currajong: 338,000 t @ 3.39 g/t (Inferred) Tasman Goldfields (Tasman, 2007-9). Macquarie Gold Limited (MGL, 2009-20) and its intermediate antecedent Somerset
		Mining (Somerset).
		3D Resource Ltd (3D, 2020-present). Post exploration:
		Past exploration: Coological mapping:
		 Geological mapping: Most recent explorers undertook geological mapping. GCR produced the initial recent comprehensive digital outcrop maps. MGL considerably enhanced the geological mapping through incorporating analysis of their enhanced geophysical surveys. Topography survey: Detailed topography data was obtained by AC in 2002 from a helicopter survey by GeoSpectum. Drilling: CEC: Total ~7,700 m in 38 (117?) holes of diamond tailed percussion, predominantly at Challenger (5,290 m in 26 holes). Also Caledonian (1,160 m in 6 holes), Victoria (490 m in 2 holes) and Currajong (750 m in 4 holes). MM&S: Total ~2,810 m in 20 holes of diamond tailed percussion, predominantly on the Old Hill line – Challenger (1,670 m in 12 holes) and Our Own (990 m in 6 holes). Minor amount at Caledonian (50 m in 1 hole) and Currajong (110 m in 1 hole). Pan Aust: Total ~2,800 m in 58 holes of percussion and diamond. Scattered across many deposits – Old Hill line (Challenger 620 m in 21 holes, Our Own 200 m in 3 holes), Caledonian (230 m in 2 holes), Victoria 410 m in 5 holes), Currajong (380 m in 6 holes), Gibraltar (710 m in 15 holes) and Dyke (260 m in 6 holes). 1979 to 1988 totals (CEC/MM&S/Pan Aust): Challenger ~7,580 m in 59 holes.
		 Caledonian ~1,440 m in 9 holes. Currajong ~1,240 m in 11 holes. Victoria ~900 m in 7 holes.

Criteria	JORC Code explanation	Commentary
	<u>'</u>	■ Gibraltar ~710 m in 15 holes.
		■ Dyke ~260 m in 6 holes.
		■ Total ~13,310 m in 116 holes.
		AC:
		 Challenger ~5,600 m in 80 holes of RC for Resource definition. This
		program tightened up the hole spacing at Challenger Main and found the
		Challenger Extended just to the north. AC employed bottle roll analysis
		methods.
		 Challenger, Donkey Hill, Fletchers, Currajong, Gibraltar ~5,850 m in 55 ho
		of RC for reconnaissance and geochem and IP anomaly follow-up.
		■ Sawpit ~500 m of RC.
		 Currajong underground in Boumoya Adit ~820 m in 6 holes of diamond. Total ~12,780 m in 141 holes
		GCR: Challenger ~6,320 in 70 holes of RC for in-fill mostly at Challenger and
		little at Currajong.
		■ Tasman:
		 Very short holes at scattered locations ~910 m in 34 holes of RC.
		 Aimed at finding N/S extensions to deposits.
		■ MGL:
		 2011: Caledonian ~640 m in 34 holes (averaging 20 m depth) of RAB on 4
		E/W cross-sections to test N/S reef connections in areas of little or no
		outcrop and no old pits. Holes inclined @ 60° to the E and spaced 10 m
		apart. Down-hole sampling 1.8 m.
		 2013: Currajong, Caledonian, Fletchers, Donkey Hill and Victoria ~1,530 r
		in 12 holes of RC for Resource definition in-fill and extension.
		o Challenger Adit bulk sample (1988/9):
		 In 1988/9 Pan Aust drove a 410 m long decline eastwards into the centre (in a N/S capse) of the Challenger deposit on the 1.380RL (the Challenger Adit).
		N/S sense) of the Challenger deposit on the 1,380RL (the Challenger Adit). O encountering the ore body drives were driven 20 m N and 80 m S to encounter
		the hanging wall and foot wall in several spots.
		 The purpose of the adit was to allow bulk samples for grade determination, for
		metallurgical testing, and to illustrate continuity of gold mineralisation.
		A bulk sample of 1,300 t @ 5.6 g/t gold was made.
		 AC refurbished the Challenger Adit and the old Boumoya Adit at Currajong (33)
		m long incline driven SE towards the old Currajong shaft).
		 Old dumps sampling:
		 CEC, MM&S and GCR all undertook programs of sampling the old waste dump
		scattered over the Property.
		 MGL also sampled the dumps as part of processing part of them through their
		new mill.

Criteria	JORC Code explanation	Commentary
	JORC Code explanation	Costeans: Details are almost absent on costean work performed at Adelong other than knowing that RMC carried out a limited program in ~1991. No costean data has been used in Resource estimations. Soil and rock chip geochemical sampling: Surveys were undertaken by Pan Aust and AC. Geophysical surveys: MMS undertook ground magnetometer surveys in ~1994 over Old Hill and Caledonian. AC undertook in the late 1990s: Detailed aero-magnetic and radiometric surveys by helicopter (E/W lines at 50 m spacing with readings every 4-5 m for 220 line km or 11 km²). Gradient ground-based array IP and resistivity surveys (E/W lines at 100 m spacing and sampling every 25 m for 30 line km or 4 km²). These were successful in delineating several new anomalies. Dipole-dipole IP surveys (8 line km) following up the anomalies found by the gradient array IP. MGL considerably advanced the geophysical data in the early 2000s by several means: 1990s data was accurately re-processed. This spectacularly improved the resolution and allowed clearer geological mapping. It also illustrated and confirmed the ~350° strike of the reefs interpreted by the Consultant. This small but highly significant variation from the previously mis-interpreted 360° orientation gave the reason some past along-strike extensional drilling programs had moved off the reefs. A series of fine scale ground-based magnetometer surveys (to 2016 that included 1,814 lines at 5 m spacing and sampling every 0.8 m for 500 line km). Geological re-interpretation of the new data. Geotechnical studies: GCR undertook a geotechnical study in 2001 to evaluate open-cat mining parameters such as possible pit wall slopes. Data was soured from the small waste rock quarry dug above Challenger. A further study in 2005 evaluated open-cut the impact of encountering underground workings in the walls of an open-cut.
		 ~1996 (JORC era) for AC and then for all subsequent explorers. That consulting required familiarity with all exploration data and some involvement or advice on each new explorer's actual exploration. Overall opinion: The Consultant considers that past exploration followed clear objectives, was competently carried out, and produced good data. That data was sufficient for the

6	Geo Res
	OFOIG2

Criteria	JORC Code explanation	Commentary
		estimation of Mineral Resources at some of the better explored deposits. The early explorers (up to and including GCR) undertook the bulk of the exploration and advanced the Project significantly. Later explorers performed less exploration but allowed a refinement in understanding of the mineralisation which provide pointers for future exploration.
Geology	Deposit type, geological setting and style of mineralisation.	Deposit type: The deposit type is that of narrow sub-vertical gold bearing quartz veins hosted in granitic rocks. Geological setting: Regionally: The Adelong Project is regionally situated at the southern end of the Lachlan Fold Belt (an orogenic zone containing many mineral deposits and mines). Two contrasting geological and tectonic environments dominate the Adelong region – the Wagga-Omeo Belt to the W (with Adelong on its eastern edge) and the Tumut Trough to the east. Adelong is located on the eastern edge of the Wagga-Omeo Belt. The Wagga-Omeo Belt is a metamorphic terrain dominated by metasediments that were deposited in a marginal basin. Granitoids are widespread and occur near Adelong, along with numerous small gabbroic stock like bodies. The Tumut Trough is dominated by rift-related sequences of flysch sediments, mafic-felsic volcanics and related sediments, and minor granites. The N to NW trending, west dipping, Gilmore Suture defines the boundary between the two zones. The Gilmore Suture broadly defines a 300 km long belt of gold (+/- copper) mineralisation in which several mines and numerous prospects are located. Locally: In the local Adelong area the Gilmore suture bifurcates into the Gilmore Fault Zone (E of Adelong) and a subsidiary western structure known as the Wondalga Shear Zone (west of Adelong). The dominant rock types in the Adelong Project area are the Wondalga Granodiorite and the Avenal Basic Igneous Complex (ABIC) comprising norites, gabbros and diorites. Mineralisation style: Primary gold mineralisation is described as occurring in "reefs", generally narrow
		sub-vertical vein or shear structures.
		 These occur predominantly in N to NW trending structural corridors between the Wondalga Shear Zone and the Gilmore Suture.
		 This area is the focus of strong deformation and late stage intrusive activity, accompanied by significant hydrothermal alteration and gold mineralisation.
		 The aplite dykes, along with the mafic dykes and quartz veins, are regarded as the likely conduits and hosts of the gold mineralisation.

Criteria	JORC Code explanation Comm	entary
	0	However the source of the ore bearing fluids appears unrelated to magmatic fluids associated with the Wondalga Granodiorite or the ABIC themselves and a deep mantle source is postulated.
Drill hole Information		 II hole data: Listings of all drill hole data used in these <i>Challenger</i> Resource imations are given in Appendices: Collar data: See Appendix 2 – Deposit drill hole listing & collar surveys. Includes: Drill hole names and deposit classification. Collar – E and N (AMG66). Elevation – RL above sea level PLUS 1,000 m. The addition of 1,000 m to all Project data was done historically to avoid negative elevations (below sea level). Hole direction – azimuth and dip below horizontal (negative angle). Hole depth – down-hole. Vein intercepts: See Appendix 3 – Drill hole vein intercepts – by deposit. Details of individual named vein "envelope" interpretations. Includes vein intercept down-hole depths, down-hole thickness and composite gold grade.
Data aggregation methods	 averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal 	Gold grades in the individual vein intercept interpretations (listed in the Appendices detailed above) were reported composited across the full vein intercept with the constituent sample grades weighted on sample length. No gold high grade cutting was applied. Vein intercept interpretation in itself implied the selection of "gold mineralised" intervals, where low grades (taken to be ~<0.2 g/t) outside the veins were excluded. ercept aggregations: Intercept aggregations simply represented the report of composite grade of a vein at a specific location. Veins were effectively geologically based. Resource block grade estimation worked of individual samples, not vein composites. tal equivalents: No metal equivalent values were necessary or used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	ometry of mineralization with respect to drill hole angles: Mineralisation was assumed sub-vertical and striking ~N/S. All drilling was inclined at ~50-60° and drilled ~E/W. Thus all drill holes would intercept veins obliquely at ~30° to dip and effectively normal to the vein strike direction. wn-hole reporting basis – down-hole: All reporting of vein intercepts was on a simple "down-hole" basis (NOT on a true width (effectively horizontal) basis).

Criteria	JORC Code explanation	Commentary
	known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Diagrams: All exploration mentioned here is historical. No new data is reported here. All current intercept interpretations are tabulated in the Appendices below (and described in the "drill hole information" Section above. Representative diagrams of drill hole vein intercepts are given in the body of the report above. Detailed section by section diagrams appeared in past reporting.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Balanced reporting: Reporting of all historical exploration results, and the constituent assays within each interpreted vein intercept, is not practicable here and would partly duplicate past reporting. However the listing of all individual vein intercepts (used in the Resource estimation reported here) are given in the Appendices below – with the basic statistics for each individual vein given as maximum, minimum and mean values.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Other material exploration data: No other exploration data is reported here as none is considered material to this Resource report. Other peripheral data is mostly historical, precedes this report considerably, or was previously reported. That other data (exploration and otherwise) included:
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work planned: The Consultant is not specifically aware of the Company's future work plans. The Consultant is aware that this report will be accompanied by a similar report(s) on the Resources at the other deposits at the project.

Section 3 Estimation and Reporting of Mineral Resources

Criteria JORC Code explanation	Commentary
Database integrity • Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. • Data validation procedures used.	 Commentary Historical knowledge continuity: All data was essentially 'historical' to the current Project owners. However the Consultant has worked on the Project continuously (in a Resource estimation sense) for each successive owner since the late 1990s. Over that period he worked for ECS Mining Consultants (ECSMC), SMG Consultants (SMGC), and then latterly for his own consultancy GeoRes. Previous Project owners during the Consultant's involvement included:

Criteria	JORC Code explanation	Commentary
		 For the Tasman data the Consultant's checking was by directly working with the Client geologist, providing maps of databased drill holes for the geologist to check with his actual drilling knowledge. For the MGL drilling the Consultant's checking was by cross-referencing his own entered data with his actual drilling knowledge (2011 drilling) or with the contract geologist's drilling knowledge (2013 drilling). The Consultant databased all data (historical and recent) into Minex geological software. Gross error software data checking occurred with all drill holes during its databasing into Minex. This caught various collar, survey, sample depth and assay value inconsistencies. All data issues were satisfactorily resolved and fixed by reference to logs. Assumed integrity: The Consultant relied on the basic integrity of the data supplied. This position was partly justified by the good standing of the exploration company's concerned and personal knowledge of the geologists. Gross integrity of the drilling data emanating from the different sampling eras and from different drilling methods was indicated by the very similar tenor and spread of gold assays. This was particularly noted during the section-by-section geological vein intercept interpretation Topography data integrity & validation: Topography data was sourced from a specific site survey (GeoSpectrum). Data (when contoured and visualised) was validated on foot. All topography XY locations matched the many hand-held GPS readings taken when mapping and pegging hole locations Topography data detail was considered accurate enough for the tasks of mapping, drill hole databasing and geological modelling.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Site visits: The Consultant (the Competent Person) has visited the Property on numerous occasions in the last 22 years (since 1998) The Consultant visited the Property in the company of all successive exploration owners (except 3D Resources Ltd) since 1998 and with the local land holder. During those visits virtually all parts of the Project surface area were visited. The Consultant has also visited the underground workings in the Challenger Adit early on with AC and most recently in 2019 with MGL (during the Sale process). Various drill hole locations, dumps and old shafts were inspected, photographed and coordinates taken by GPS.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource 	 Geological mineralisation style interpretation: The geological interpretation at ALL prospects is that of similar 'narrow sub-vertical sub-parallel quartz vein hosted gold mineralisation'. Confidence in the geological interpretation: The Consultant is confident in the geological interpretation of vein style gold deposits. This was ultimately and primarily based on the known style of the historical mining of narrow sub-vertical quartz reefs, observing outcrops of the reefs at surface, and being able

Geokes —	
Criteria JORC Code explanation	Commentary
	to observe such reefs underground in the Challenger Adit. All drill hole gold mineralisation confirmed the shape, position and style of a vein system. Intercepts in the drill holes in the immediate vicinity of the Challenger Adit and of the Boumoya Adit at Currajong confirm the vein styles at both deposits. Data nature, assumptions & geological controls: The basic assumption was that all gold assays ~>0.2 g/t represented localized mineralization (a vein) and that lower or zero assays represented barren rock. These mineralization intercepts would also frequently contain much higher grades typically recognized as 'ore' grades (>1.0 g/t). Mineralization clearly grouped together in laminar 'vein' styles (contiguously from hole to hole along strike and up and down dip) forming bodies (lodes) of realistic extraction size (and therefore representing Resources). Even very lowly mineralized intercepts (0.1 to 0.2 g/t) exist on strike and dip of veins – interpreted as the trace of the vein between thicker and better mineralized lodes. Mineralised intercepts clearly aligned in 3D into swarms of sub-parallel sub-vertical narrow planes interpreted geologically as veins. At all deposits the strike of the mineralized intercepts was clearly parallel (350° to 355°) to the latest aeromagnetic and ground magnetic mapping. Very steep westerly to vertical dips were interpreted – similar to that observed and modelled at Challenger. The vein foot wall and hanging wall positions were interpreted in drill holes from the ends of contiguous sharply gold mineralised intercepts. In all cases where the geological logging was available (minimal) it confirmed the occurrence of veins. Country rock was virtually completely barren of gold mineralisation. Mineralised intercepts were very distinct, containing either reasonable (close to a nominal cut-off grade of ~0.5 g/t) and very good mineralisation (well above cut-off grade) or virtually no mineralisation (at detection limit (~0.01 g/t) or below). All samples within the interpreted v
	 CA08 (8), CA07 (7), CA06 (6), CA05 (5), CA04 (4), CA03 (3), CA02 (2), CA01 (1), CAM1 (11), CAM2 (12), CAM3 (13), CAM4 (14), CAM9 (19), CAM11 (21)

Criteria	JORC Code explanation	Commentary
		 Donkey Hill veins: DH06 (6), DH05 (5), DH04 (4), DH03 (3) Alternative interpretations: All deposits: Even if the nature of mineralisation is different to that interpreted as being within sharply defined veins then its continuity would still have been constrained by the vein surface modelling, the block modelling within the vein surfaces, and the domain (by individual vein) assay control. And in many spots the density of drilling is sufficient to preclude any other type of mineralisation continuity. Where drill hole spacing becomes wider (>50 m) the individual close-spaced veins may have been miss-named (hence the lowest confidence assignment). However this would not impact volumetrics and would have minimal impact on estimated grades overall. Currajong: The CP considers it very unlikely overall that mineralization continuity could be interpreted in any other orientation (sub-vertical 355° oriented veins). Existing old mining on the western side would confirm this. Orientation of the new interpretation of an eastern side parallels the western side and aligns both with outcrop mapping and the mag data. Caledonian: The CP considers it unlikely overall that mineralization continuity could be interpreted in any other orientation (sub-vertical 350° oriented veins). Although insufficient drilling exists here to overwhelmingly establish this the vein style mineralisation strongly appears to align with the Challenger Extended deposit to the south — of which the CP considers it to simply be the northern extension of the same set of veins. Vein mineralisation also aligns closely with the mag data. Dankey Hill:
		 Existing old mining would confirm this. Continuity factors on geology and grades: Geological continuity was ultimately controlled by interpreting individual named veins in each deposit. This name was used to model the vein's roof and floor surfaces independently. Grades in each vein were segregated with a unique a data population domain number. All assays within a vein were linked by the number with other assays in the vein identified in other holes. Block grade continuity within veins was controlled by an 'un-folding' technique oriented in the plane of the veins.

Criteria	JORC Code explanation	Commentary
		 Block grade estimation also employed a strong E/W (X) direction distance weighting factor (2) to minimise cross-strike continuity and emphasise continuity within the vein (up-dip and along-strike).
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	Deposit dimensions (volume containing each deposit. Currajong dimensions: Strike length (N/S): 600 m Depth: 300 m from surface down Caledonian dimensions: Strike length (N/S): 750 m Depth: 250 m from surface down Depth: 250 m from surface down Donkey Hill dimensions: Strike length (N/S): 400 m Width (E/W): 200 m Depth: 250 m from surface down Vein dimensions: Widths: Individual veins were typically ranged from ~0.5 m to ~10 m wide horizontally (E/W). Currajong West vein widths: Average width: 3.2 m Average width: 3.2 m Average maximum width: 8.8 m Maximum width: 24.0 m (CU_M) Currajong East vein widths: Average width: 1.1 m Average maximum width: 2.3 m Maximum width: 4.0 m (CUE2) Caledonian vein widths: Average width: 0.9 m Average width: 0.9 m Average maximum width: 2.5 m Maximum width: 5.7 m (CA05) Donkey Hill vein widths: Average maximum width: 3.4 m Average maximum width: 5.3 m (DH04) Vein spacing: Spacing between individual veins varied, but typically closer spacings were of the order of -5 to 15 m apart.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum 	 ESTIMATION TECHNIQUES Vein surface modelling: Software: Modelling and estimation was done in Minex Genesis software. Method: Geological modelling employed computerised gridded DTM surface interpolation. The method's appropriateness stems from its 3D computational capability and rigor.

Criteria JORC Code explanation

distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.

- The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.
- The assumptions made regarding recovery of by-products.
- Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).
- In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.
- Any assumptions behind modelling of selective mining units.
- Any assumptions about correlation between variables.
- Description of how the geological interpretation was used to control the resource estimates.
- Discussion of basis for using or not using grade cutting or capping.
- The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

Commentary

Gridded surfaces allow simple mathematical operations within and between surfaces. Bounding lode surfaces were interpolated from the top and bottom down-hole lode intercepts. Each lode was modelled independently with a hanging wall (structure roof, SR) and foot wall (structure floor, SF) boundary surface (see below).

- Algorithm: Surface modelling used a trending growth algorithm to interpolate smooth natural surfaces (as opposed to straight line methods) as a regular fine mesh. Through extrapolation this method honours local inflections away from the reference plane mean orientation. Mesh point interpolations grow out from data points until all mesh points are estimated.
- Orientation: All vein surfaces effectively semi-vertical and ~N/S. So model wrt a vertical N/S reference plane west of the veins. Models vertical N/S, looking west.
- Model build: After independent interpolation of each lode's roof and floor the suite of surfaces was 'built' into a valid model using processes to correct potential cross-overs between and within lodes.
- Surface estimation parameters common to ALL deposits:
 - Algorithm: Growth
 - Scan distance: 150 m (nominal with growth algorithm)
 - Expansion: 25 m outside perimeter intercepts
 - Extrapolation.
 - No data limits.
 - Surface names: Vein name + suffix SR (roof) or SF (floor)
 - XY directions: Pseudo vertical N/S. So X = Y N/S, Y = Z vertical
 - Mesh: 2.5*2.5 m XY (equiv. YZ)
- o Currajong surface parameters:
 - Reference plane: Local vertical N/S 6000E, group REF (596,000E)
 - Grid file: DD CUR, file ...202008_CUR_GR2012.GRD
 - Origin (minimum) lower south corner:
 - X: 6,094,000 (equiv. Y)
 - Y: 1,150 (equiv. Z)
 - Extent:
 - X: 650 m (equiv. Y)
 - Y: 350 m (equiv. Z)
- Caledonian surface parameters:
 - Reference plane: Local vertical N/S 6500E_CA, group REF_CAL (596,500E)
 - Grid file: DD CAL, file ...202007_CAL_GR2012.GRD
 - Origin (minimum) lower south corner:
 - X: 6,093,800 (equiv. Y)
 - Y: 1,100 (equiv. Z)
 - Extent:
 - X: 1,400 m (equiv. Y)
 - Y: 400 m (equiv. Z)

Criteria	JORC Code explanation	Commentary
		■ Mesh: 2.5*2.5 m XY (equiv. YZ)
		 Donkey Hill surface parameters:
		 Reference plane: Local vertical N/S 6500E_DH, group REF_DH (596,500E)
		Grid file: DD DH, file202006_DH_GR2012.GRD
		Origin (minimum) – lower south corner:
		 X: 6,095,000 (equiv. Y)
		 Y: 1,100 (equiv. Z)
		Extent:
		 X: 1,200 m (equiv. Y)
		 Y: 400 m (equiv. Z)
		Mesh: 2.5*2.5 m XY (equiv. YZ)
		Drill hole sample data population domains:
		 Samples and blocks (see below) in veins were uniquely identified and segregated by
		domain number for assay analysis and block grade estimation.
		 Domains were set in the drill hole database and in the block models.
		 Domain numbers are given above with the vein names.
		Drill hole gold sample analysis:
		 Gold (AU) was the focus of the Project.
		NO detailed statistical or geostatistical analysis was undertaken as the CP considered each
		deposit (with the possible exception of Currajong) to have insufficient drill holes and close
		or regular enough spacing.
		Geostatistical analysis is greatly aided by Z-grid control (as modelled here) – and this should be employed when more drilling data is symilable an those deposits.
		should be employed when more drilling data is available on these deposits.
		However detailed geostatistical analysis had been performed in the past on the (similar mineralization et de catting and size). Challenger deposit and general grade estimation.
		mineralisation style, setting and size) Challenger deposit and general grade estimation parameters (see below) were informed by those results.
		 Gold grades throughout the goldfield are characterised generally by great variability.
		Scattered high grade samples are of much higher tenor (to >100 g/t) than more general
		(numerous) 'ore grade' samples (~2-5 g/t). This nuggety effect would typically require
		specific handling of high grades during block estimation.
		Grade continuity control block model (Z-grid):
		 An 'un-folding' 3D block model (a Minex Z-grid) was built within the geological vein surface
		models to provide domain control within layers and to control grade trending continuity
		within and along the layers (the 'Z' direction).
		 As the veins were essentially in an ~N/S semi-vertical plane the Z-grid required rotating to
		have its Z axis normal to that plane (see below).
		o 'Un-folding' block model (Z-grid):
		 A Z-grid is built to align its X and Y data search directions sub-parallel to geological layer
		models (with each layer modelled by bounding upper and lower surfaces) with the same
		orientation. The XY searching is continuously (dynamically) transformed to follow along
		the undulations of the geological layers (and is therefore not in a straight line but parallels

Criteria	JORC Code explanation	Commentary	
Criteria	JORC Code explanation	t d d t d d d d d d d d	the layer). The Z direction remains a fixed direction normal to the average plane of the layer. The layer sub-parallel effect is achieved by a fixed number of 'sub-blocks' being assigned across a layer in the Z direction (say 10). Layers with higher average and maximum thicknesses are assigned the most Z blocks. Thus Z direction block heights are always fractions of the full layer height at any XY location. As the thickness of the layer varies so does the Z sub-block height (so with 10 sub-blocks where the layer is 10 m thick the Z block heights would be 1 m, where 5 m they would be 0,5 m, etc.). This creates an undulating block height mesh normal to the layer as the individual Z block boundaries continuously remain sub-parallel to the layer orientation. This 3D mesh orients the X and Y direction search preferentially along the Z sub-block layers. Z direction grade estimation weighting >1 supresses grade continuity across the layers. A Z-grid may be built from multiple geological layers. Blocks in each layer are assigned a unique domain number. Where a geological layer model is not 'horizontal' (where its XY axis would be in the usual horizontal plane) then the Z-grid is rotated to align its 'pseudo' XY axes parallel to the plane of the geological model (and therefore its Z axis normal to the plane of the model). Thus a vertical geological layer model would require a 90° rotation of the relevant X or Y axis (depending on the model strike direction) to orient the XY plane vertically, resulting in the Z axis now being horizontal. In Z g Z-grid rotation — common to ALL deposits:
		- -	As all vein surfaces were in an ~N/S semi-vertical plane the Z-grids were rotated -90° about the Y axis to orient its pseudo 'Z' axis to be horizontal E/W (normal to the vertical N/S plane). This also rotated the pseudo 'X' axis to be vertical down. This rotation also require the grid's origin and extents to be transformed to pseudo positions and directions (see dimensions below). Rotation – common to ALL deposits: X: 0° X: 0° Y: -90°
			o Z: 0°
			g Z-grid block sizes – common to ALL deposits:
		2	X and Y (pseudo Z and Y) block sizes were set to reflect a simple proportion (usually 25%) of the actual drill hole spacings N/S and vertically. As this spacing averaged ~20 m for closer holes an X/Y blocks size of 5 m was set. This was also a simple multiple (x2) of the vein surface X/Y mesh size of 2.5 m.
		• <u>2</u> 8 t	Z (pseudo X) block sizes were nominally set to be 2.5 m by dividing ~100 blocks into an horizontal deposit width of ~250 m. Actual Z block sizes would be determined by the number of blocks assigned and vein widths. In practice the Z block sizes would all be <0.5 m wide.
			Z-grid block sizes:
			o X: 5.0 m (pseudo Z)

Criteria	JORC Code explanation	Commentary
		o Y: 5.0 m (actual Y)
		 Z: 2.5 m nominal (pseudo X (E/W))
		 Currajong Z-grid block dimensions: (CUR2_Z.GR3)
		■ Origin:
		 X: 596,200 E (actual)
		 Y: 6,094,050 N (actual)
		 Z: 1,470 RL (actual – at surface)
		Extent:
		 X: 300 m (pseudo vertically down (to 1,170 RL) with rotation about Y axis)
		 Y: 600 m (actual to 6,094,650 N)
		o Z: 250 m (pseudo horizontally east (to 596,450 E) with rotation about Y axis)
		• Z blocks:
		 A Z block size of 2.5 m would give 100 blocks over the 250 m pseudo Z extent.
		 To accommodate 18 veins each was assigned ~5 blocks.
		 Caledonian Z-grid block dimensions: (CAL2_Z.GR3) Origin:
		ong
		 X: 596,800 E (actual) Y: 6,094,150 N (actual)
		o Z: 1,450 RL (actual)
		Extent:
		o X: 250 m (pseudo vertically down (to 1,200 RL) with rotation about Y axis)
		• Y: 750 m (actual to north)
		 Z: 300 m (pseudo horizontally east (to 597,100 E) with rotation about Y axis)
		• Z blocks:
		 A Z block size of 2.5 m would give 120 blocks over the 300 m pseudo Z extent.
		 To accommodate 14 veins each was assigned ~8 blocks.
		 Donkey Hill Z-grid block dimensions: (DH2_Z.GR3)
		■ Origin:
		 X: 596,600 E (actual)
		 Y: 6,095,650 N (actual)
		 Z: 1,550 RL (actual – at surface)
		Extent:
		 X: 250 m (pseudo vertically down (to 1,300 RL) with rotation about Y axis)
		 Y: 400 m (actual to north)
		 Z: 200 m (pseudo horizontally east (to 596,800 E) with rotation about Y axis)
		• Z blocks:
		 A Z block size of 2.5 m would give 80 blocks over the 200 m pseudo Z extent.
		 To accommodate 4 veins each was assigned 15 blocks.
		Domain control block model (domain 3D-grid):
		 A 'domain' 3D block model (a Minex 3D-grid) was built for each deposit within the
		geological vein surface models to provide block domain control within veins – linking vein

Criteria	JORC Code explanation	Commentary
		block domains with the vein assay domains in the drill hole database.
		 The domain grids was built in tandem with the Z-grids, with the same block dimensions and
		rotations. The domain grids carried similar names to the Z grids with the substitution of the
		letter 'D' for the 'Z'.
		Gold grade block estimation (gold 3D-grid):
		A 'gold' grade 3D block model (a Minex 3D-grid) was estimated for each deposit from gold
		assays stored in the drill hole database. The grade grids was built with direct control from the Z-grids (to dynamically trend search
		directions along the veins) and the domain grids (to segregate samples by vein).
		 Minex 3D-grids are usually built as orthogonal 3D grids without sub-blocking.
		However here the gold grade 3D-grids had the same block dimensions and rotations as the
		Z-grids (see above). The grade grids carried similar names to the Z grids with the inclusion
		of the letters 'AU'.
		 Input drill hole sample parameters – common to ALL deposits:
		■ Variable: AU
		Down-hole sample compositing: None.
		This position was taken because of the typically very limited (typically 1-3) The position was taken because of the typically very limited (typically 1-3) The position was taken because of the typically very limited (typically 1-3).
		numbers of samples in each vein intercept.
		 Down-hole composit lengths of 1.0 m and 0.5 m were trialled initially – both leading to excessive data smoothing and the effective elimination of any high
		grades.
		 Block gold grade estimation parameters – common to ALL deposits:
		 Method: Single pass estimation.
		 The interpolation of grades in two passes (to overcome the issues of very
		localised highly anomalous grades) was considered but not undertaken because
		of the limited numbers of samples/holes in general and high grade samples in
		particular.
		 In a 2 pass estimation an initial 1st pass uses all samples whilst a 2nd pass uses
		only high grade samples with severely restricted scan distances to over-write
		blocks close to the high grades. Algorithm: Inverse distance squared (ID2).
		 Algorithm. Inverse distance squared (ID2). Continuity control: Un-folding search direction continuity control by Z-grid in the
		vertical N/S plane of the lodes.
		Scan distance: 50 m. One pass.
		Data limits: None.
		 No lower cut or clip was required as the vein intercept interpretation effectively
		excluded all grades outside the veins, the vast majority of which were effectively 0
		g/t (or below detection).
		 No upper cut of clip was applied because of 1) the limited number of anomalous
		high grades, 2) their short intervals, and 3) the positive desire to allow the few
		high grades to register higher grades in some blocks because of the CP's past

Criteria	JORC Code explanation	Commentary
		experience at the Challenger deposit where this was found to be realistic.
		 Sample numbers used to calculate each block:
		 Samples/sector: 3 maximum, 1 minimum
		Sectors: 1 minimum
		Effectively samples 18 maximum, 1 minimum
		 Anisotropy:
		 Without any clear indications of plunge in the ~N/S plane of the veins the grades
		were assumed to be isotropic (effectively in Y and Z directions) in the plane.
		With the natural in-vein continuity in play continuity was discouraged across strike (affectively X diseases). Disease and interest and in the second
		(effectively X direction). Direction distance weighting was applied to the X direction (E/W) to minimise continuity across strike.
		· · · · · · · · · · · · · · · · · · ·
		 Distance weighting: Direction distance ratios applied were X – 2, Y – 1, Z – 1. Direction rotation: None (no plunge accounted for).
		Block gold grade estimation statistics:
		 Currajong gold estimates: (CUR2_AU2.GR3)
		 Input Au: Samples 2,296, Max 116.00 g/t, Min 0.00 g/t, Av 0.42 g/t
		 Estimated Au: Blocks 97,794, Max 116.00 g/t, Min 0.00 g/t, Av 0.72 g/t
		 Caledonian gold estimates: (CAL2_AU1.GR3)
		 Input Au: Samples 1,361, Max 114.74 g/t, Min 0.00 g/t, Av 0.25 g/t
		 Estimated Au: Blocks 117,107, Max 114.74 g/t, Min 0.00 g/t, Av 0.25 g/t
		Donkey Hill gold estimates: (DH2_AU2.GR3)
		 Input Au: Samples 504, Max 67.90 g/t, Min 0.00 g/t, Av 0.42 g/t
		 Estimated Au: Blocks 51,699, Max 63.92 g/t, Min 0.00 g/t, Av 1.64 g/t
		 Grade reporting block model (geological resource database):
		 'Geological resource block database':
		 A Minex geological database is used to store, JORC classify, report and plot grade
		estimates. It may then also be used for pit optimisation.
		The database has regular orthogonal 3D blocks (which may be sub-blocked down
		in size) and is used to database geology (by domain) and multiple variables (typically grades and density).
		Blocks are built from geological models (typically wire-frames or vein surface)
		models). Primary maximum size blocks are created where possible, and smaller
		variably sized sub-blocks are created along edges of models to provide volumetric
		accuracy.
		 Grades may be estimated directly into blocks from drill hole samples or may be
		loaded from individual grade block 3D-grids. Those grade 3D-grids may be rotated
		and/or computed with Z-grid control.
		 Other variables, such as manipulated grades, density or JORC classification
		variables, may be computed using SQL macros.
		 Adelong resource block database: (ALL deposits)

Criteria	JORC Code explanation	Commentary
		 Primary block sizes (1*5*5 m) were set to reflect the thin N/S vertical planar shape
		of the veins.
		 Sub-blocking: None (XYZ 1)
		Grades: Database blocks were loaded with grades directly from the individual Grades block models (see above). Grades were excepted into the database.
		grade block models (see above). Grades were averaged into the database orthogonal blocks from the dynamic sized Z-grid blocks.
		 Currajong reporting block model dimensions: (CUR2_WEST.G3* / CUR2_EAST.G3*)
		Block build:
		 Deposit split into a west side (equivalent to old 2005 area) and an east side
		(new modelling)
		West side built from Z-grid (CUR2_Z) domains 1 to 7
		 East side built from Z-grid (CUR2_Z) domains 11 to 18 and 21 to 23
		 Rotation: None. All coordinates actual.
		Sub-blocking: None
		Origin (minimum):
		• X: 596,200 E
		• Y: 6,094,050 N
		• Z: 1,170 RL
		• Extent:
		• X: 250 m
		• Y: 600 m
		• Z: 300 m
		Block sizes: V: 4.0 mm
		X: 1.0 mY: 5.0 m
		● Y: 5.0 m ● Z: 5.0 m
		Caledonian reporting block model dimensions: (CAL2.G3*)
		Block build:
		 Built from Z-grid (CAL2_Z) domains ALL (1 to 8, 11 to 14, 19,21)
		Rotation: None. All coordinates actual.
		Sub-blocking: None
		 Origin (minimum):
		• X: 596,800 E
		• Y: 6,094,150 N
		• Z: 1,200 RL
		Extent:
		• X: 300 m
		• Y: 750 m
		• Z: 250 m
		Block sizes:

Criteria	JORC Code explanation	Commentary
		• X: 1.0 m
		• Y: 5.0 m
		• Z: 5.0 m
		 Donkey Hill reporting block model dimensions: (DH2.G3*)
		Block build:
		 Built from Z-grid (DH2_Z) domains ALL (3 to 6)
		 Rotation: None. All coordinates actual.
		Sub-blocking: None
		Origin (minimum):
		• X: 596,600 E
		• Y: 6,095,650 N
		• Z: 1,300 RL
		Extent:
		• X: 200 m
		• Y: 400 m
		• Z: 250 m
		Block sizes:
		• X: 1.0 m
		• Y: 5.0 m
		• Z: 5.0 m
		Block gold grade estimation statistics:
		 Currajong WEST gold estimates: (CUR2_WEST.G3*)
		 Load AU2: Blocks 35,007, Max 116.00 g/t, Min 0.01 g/t, Av 0.83 g/t, SD 1.94, Var 3.74, CV 2.33
		 Currajong EAST gold estimates: (CUR2_EAST.G3*)
		 Load AU2: Blocks 10,880, Max 11.20 g/t, Min 0.00 g/t, Av 0.44 g/t, SD 0.24, Var 0.85, CV 2.11
		 Caledonian gold estimates: (CAL2.G3*)
		 Load AU1: Blocks 17,746, Max 43.25 g/t, Min 0.00 g/t, Av 1.01 g/t, SD 3.70, Var 14.21, CV 3.72
		 Donkey Hill gold estimates: (DH2.G3*)
		 Load AU2: Blocks 5,542, Max 47.57 g/t, Min 0.01 g/t, Av 1.83 g/t, SD 3.62, Var 13.12, CV 1.98
		Resource classification:
		 Caledonian and Donkey Hill: Resources were all considered to be in the JORC Inferred
		class.
		 Currajong: Whilst predominantly considered JORC Inferred a portion were considered to
		be in the JORC Indicated class in the western part of the deposit. That area was
		equivalent to the area for which Resources had previously been reported in 2005.
		 During grade estimation of each block the average distance of samples and the

Criteria	JORC Code explanation	Commentary
Опспа	Torto code explanation	number of samples were stored (variables AU_D and AU_P). A classification variable (AU_CAT) was computed in each block by applying CP determined criteria (see below in JORC classification section) to the distance and number variables. The criteria set a number in each block for Resource class: A — Measured Defermined CHECK ESTIMATES: Other estimates to check against: Currajong West: 1998 to 2005 JORC Resource estimates by Consultant. Currajong East / Caledonian / Donkey Hill: No modern Resource estimates have been done for these deposits. A non-JORC simple polygonal estimate was produced (and semi-reported) for
		Donkey Hill, and is known to be ~50% less than this estimate. It preceded much of the extensional drilling at the deposit.
		By-product recovery & deleterious elements:
		Other elements were effectively not associate and in this Recovers estimation as the
		 Other elements were effectively not considered in this Resource estimation as the
		Client's economic focus was principally gold. This focus would appear reasonable from the past gold mining history in the district.
		 Silver was assayed for very sporadically, and showed little mineralisation. From a wider range of element assayed in scattered holes there appears little
		potential for both by-product or deleterious elements. The CP's impression is that no 'modern' high-tech elements (lithium, rare earths etc) have been assayed for and their potential would appear completely untested.
		 Deleterious elements:
		 Past mining did not apparently encounter deleterious elements. The presence of some sulphides (principally pyrite) within veins was apparently taken into account by MGL's more recent metallurgy and plant design.
		It is presumed that the AMD issue was similarly taken into account by MGL Plack size account a size relationship. **The state of the country of the size account to the siz
		 Block size – sample size relationship: Situation:
		 Situation: Block sizes: Major block sizes were effectively small at 1*5*5 m.
		 Sample spacing: Down-hole sampling was typically ~0.5 to 2 m; drill section spacing was mostly down to ~20-50 m; and hole spacing on section was ~50-100
		m. ■ Data search distances: Maximum 50 m.
		Data seatch distances. Maximum 50 m. Distance relationships:
		 Block sizes were considered well-proportioned to drill hole spacing and down-hole sampling intervals.
		 In long-section the block size (5 m) was 25% of the typical minimum hole spacing

Criteria	JORC Code explanation	Commentary
	· · · · · · · · · · · · · · · · · · ·	(20 m).
		 In cross-section the block size (1 m) was of the same order as down hole sample
		intervals and usually 2-300% narrower than 2-3 m wide veins.
		Model – SMU relationship:
		 No specific focus on selective mining units occurred.
		 However The primary 1*5*5 m tall thin block sizes in the models were specifically built not only to reflect vein shape but to take into account the probability of hand-held underground mining.
		 Therefore the block shape and size reflected a practical underground mining unit.
		Correlation between variables:
		 No work on variable correlation was done as the sample database only effectively contained one variable (gold).
		Geological interpretation control of estimate:
		The block grade estimates were fundamentally controlled by the geological interpretation
		of sample mineralization – in thin sub-vertical sub-parallel veins.
		 Use of 'un-folding' Z-grid modelling emphasised in-vein continuity.
		 Use of sample domain control prevented contamination of grades between veins.
		 Grade estimation anisotropy enhanced in-vein continuity.
		Grade cutting/capping use:
		 Effectively no grade cutting of clipping was used.
		Justification for this was
		 Vein interpretations had effectively already clipped out low grades (the country rock between veins.
		 High grades were relatively uncommon and where they existed experience with
		Challenger showed that they should be incorporated to realistically allow the known high
		grade shuts to be represented.
		 Only the general paucity of drill holes (Caledonian and Donkey Hill in particular)
		prevented high grades being specifically catered for with 2 nd pass estimation using high
		grade samples over very short distances.
		 An indeterminate number (but possibly significant) of un-sampled drill hole intervals
		had wrongly been assigned gold assay values of zero. And many mineralised
		intervals were not sampled. This virtually ensures that current estimates are
		conservative.
		Estimate validation: Display and the second display is a second display in the s
		Block geology validation: Values report, laiting the plate appropriate distribution report of within repolation model.
		Volume report: Initial check to compare volumes reported within geological model lede surfaces with volumes reported from the blacks built from them. Expect
		lode surfaces with volumes reported from the blocks built from them. Expect almost exact match. Spot checks of several lodes considered acceptable.
		 Plots: Visual cross-sectional plot comparison of block boundaries with geological
		model surface intersections. Particular focus on validity of the blocks in each lode
		(possibly corrupt if the raw surfaces overlapped). Also check of block domain
<u> </u>		(possis) conservation can earliaged eventapped). Also enter a block definality

Criteria	JORC Code explanation	Commentary
		assignments. Comparisons considered good. Block grade estimate validation: Estimate stats: initial basic check to compare overall (not on a lode/domain basis) stats given during the block estimation – input drill sample stats with output estimated grade stats. Expect reasonable but not exact match. Particular focus on closeness of the maximums and the raw averages. Plots: Methodical visual cross-sectional plot comparison of colour-coded block grades with annotated drill hole samples. Comparisons considered acceptable. Estimate reconciliation: Not possible as no previous estimates exist. Estimate reconciliation: The Currajong West estimate was checked against the Consultant's previous JORC estimate in 2005 (see Resources tables). The estimate was of the same order of magnitude and slightly larger due to the inclusion of previously missing drill holes. The old Donkey Hill rough estimate was not considered relevant to reconcile with. The Currajong East and Caledonian deposits had no estimates to reconcile against. Mine records: Comparison was not specifically possible with mine records as where they applied to was not certain. However the reported past production grades are very high by rough comparison. This fact is presumably the reason many past geologists have surmised that drill hole assay values under-call the true grades significantly. This latter position is partially bourne out by the Consultants' experience with the MGL 2013 drilling where all 'anomalous' fire assay gold values were re-assay by bottle roll – and found to be up to ~100% greater. The Consultant's overall view here is that past Adelong mining encountered small volumes of ore with possible very high grades (in the order of many oz/t, or >100 g/t). Encountering these by drilling is very difficult and unlikely, and only actual mining will prove the point.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Moisture: Reporting has assumed a hard rock dry basis, with no account made for water. No data on moisture was available.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The principal low 1.0 g/t gold cut-off value was justified as being in line with other similar gold deposits in Australia.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider 	 Underground mining has been considered for the Project as this occurred in the past. However open cut mining would also be highly possible for shallower regions of the deposits. Past Resources have be studied using 'pit optimisation' and practical profitable open cuts have been shown for Challenger and Currajong.

Criteria	JORC C	ode explanation	Com	mentary
	assui meth Minei rigord shoul	ntial mining methods, but the imptions made regarding mining ods and parameters when estimating ral Resources may not always be bus. Where this is the case, this lid be reported with an explanation of asis of the mining assumptions made.		
Metallurgical factors or assumptions	regar alway deter event poter assur treatr when alway this s of the	casis for assumptions or predictions ading metallurgical amenability. It is a necessary as part of the process of amining reasonable prospects for the economic extraction to consider atial metallurgical methods, but the amptions regarding metallurgical ment processes and parameters made a reporting Mineral Resources may not as be rigorous. Where this is the case, whould be reported with an explanation as basis of the metallurgical mutual mutaneous made.	• Th	everal past owners have conducted metallurgical studies. The most recent (MGL) undertook fairly extensive testing and on that basis constructed a gold ill at site. The CP understands that a high proportion (>90%) of the gold may be extracted by gravity.
Environmental factors or assumptions	waste option the prosp to con impaction determinates in poter report with a assure	mptions made regarding possible and process residue disposal ans. It is always necessary as part of rocess of determining reasonable pects for eventual economic extraction ansider the potential environmental acts of the mining and processing ation. While at this stage the amination of potential environmental acts, particularly for a greenfields act, may not always be well advanced, attacts of early consideration of these atial environmental impacts should be acted. Where these aspects have not considered this should be reported an explanation of the environmental amptions made.	wo	ne Project is understood to have had recent (and possibly continuing) mining approval – which buld indicate that environmental factors have already been addressed.
Bulk density	Wheter assure deter	ther assumed or determined. If med, the basis for the assumptions. If mined, the method used, whether wet v, the frequency of the measurements,	• De	A dry bulk density of 2.7 t/m ³ has been assumed and used.

Criteria JORC Code explanation the nature, size and representativeness of the samples. • The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. **JORC** The basis for the classification of the Classification categories. • Whether appropriate account has been

Commentary

impression they had not been taken (particularly not recently) or not in sufficient numbers.

- The assumed density was derived from the AC/GCR dump studies (and possibly by the CEC bulk sample from the Challenger adit).
- Density accounting for rock variability:
 - o The vein rock could be considered as a rock type whose density may vary considerably over short distances (considering the variable mineralogy).
 - o This represents an inhomogeneous rock mass on a small drill hole diameter scale.
 - Therefore bulk sampling should be the most reliable source of determinations.
 - o The historic CEC bulk sample is the only one to date, and data is sketchy (but possibly informed AC/GCR use of 2.7 t/m³).
- Assumptions behind density estimates:
 - The Consultant has taken the default 2.7 t/m³ density default as reasonable for a considerable period.
 - During that time the density has also been assumed as correct by a variety of mining engineers and other experts, particularly metallurgists.
- Mineral Resources into varying confidence
- taken of all relevant factors (ie relative confidence in tonnage/grade estimations. reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).
- Whether the result appropriately reflects the Competent Person's view of the deposit.

Classification basis:

- Classification:
 - o Currajong West: The CP's opinion was that the deposit's JORC classification should follow the past 2005 decision to predominantly classify it as Inferred but to also classify a smaller portion of the more tightly drilled area as **Indicated** (see criteria below).
 - Currajong East / Caledonian / Donkey Hill: The CP's opinion was that the first-time JORC classification for these newly estimated deposits should be Inferred.
 - It should be noted that all of these deposits were historically mined and that portions close to the old workings could potentially be classified higher than they have been.
- Classification criteria:
 - Classification was done on a numeric block by block basis followed by visual verification of acceptable areas of contiguous classes.
 - The principal criteria used to set a block class number was the average distance and number of samples used to estimate individual block grades (see method above).
 - Sample distance could be related to the average geostatistical maximum range determined from the variogram analysis done in the past for the Challenger deposoit. Samples distances less than the range would have higher confidence (as they would be statistically linked) with increasing confidence with reducing distance.
 - Numbers of samples could be related to the uniformity of drilling around a block. Greater numbers of samples would imply better data distribution around a block. Blocks at the edges of veins, where holes were only present on one side, would have the lowest confidence.
 - Class rules were:
 - Measured 3 distance ≤ 10.0 m and samples ≥ 6
 - Indicated 2 distance ≤ 22.5 m and samples ≥ 2
 - Inferred 1 distance ≤ 50.0 m and samples ≥ 1

Criteria	JORC Code explanation	Commentary
Спена		 Accounting for relevant factors: Classification details were developed: As project knowledge was gained – over 20 years. During the geological interpretation. With regard to the previous mining and history and data spacing deemed necessary for that. The CP was particularly aware of: Past mining (which proves the existence of gold in narrow veins structures). The close link between surface outcrop lode mapping and vein intercepts interpreted in drill holes. The close link between the ~350-355° orientation of the veins with the new and detailed ground mag mapping. CP's view of classification: CP's view of Currajong West classification:
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 Audits: The Consultant is unaware of specific third-party audits of these Resources. However during early MGL (and its precursor Somerset Mining) ownership (and more recently) the 2005 Resources were reviewed by a series of potential purchasers or mining consultants acting for them. One of these consultants, Mining One from Melbourne, conducted (in ~2010) a detailed study and review of the geology, Resources and pit optimisation of Challenger and Currajong (West). In 2016 an independent geological Resource consultant very briefly reviewed the Resources, apparently concluding their validity but noting the risk of not having excluded all past mining. The Consultant here concurs with that risk, but considers it minimal (see also 'Risk' below).
Discussion	 Where appropriate a statement of the 	Accuracy & confidence in the estimate:

Criteria of relative accuracy/ confidence

JORC Code explanation

relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

- The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.
- These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

Commentary

- o Statement: The Consultant is confident in the accuracy of the estimate.
- Reasons:
 - The careful geological vein intercept interpretation and vein surface modelling are considered the most appropriate to the style of mineralisation.
 - The clear continuity of grades between a great majority of drill holes gives the CP confidence in the interpretation.
 - Parts of these interpretations and estimates may be considered as at least second generation studies.
 - The Challenger geostatistical analysis in 2010 produced good results which build confidence and showed that statistically determined ranges were up to ~200% the typical drill hole spacings.

Risks:

- The Consultant considers the greatest risk to the reported Resources is the quantum of materially already mined. That material has **not** been deducted as there are very few records to show the shapes.
- However all past attempts to quantify this at Challenger (where some records are available and the site of effectively the greatest extraction) have shown that the mined volumes are much <10% of Resource volumes.
- This previously mined risk is considered minimal (and nil below old depth limits which are above the base of the Resources).
- Global or local estimate: This is a global estimate.
- Comparisons:
 - The only comparisons that can be made are with historical (~100 year old now) mine production.
 - That production was considerable (see all recent reports, including the 2016 MGL IPO document) and cut-off grades were much higher than possible now.
 - These facts would very strongly indicate that these new estimates are highly plausible.

APPENDIX 2 - DEPOSIT DRILL HOLE LISTING & COLLAR SURVEYS

The following listing gives name and collar details of the drill holes within the three deposit areas.

NB: Easting and Northing coordinates are in AMG 66.

Drill hole	Easting (m)	Northing (m)	Elevation (m)	Depth (m)	Azimuth (°)	Dip (°)
CURRAJONG					•	
AD042	596,249.4	6,094,275.2	1442.5	109.5	102.56	-55
AD076	596,276.3	6,094,175.9	1429.5	24.5	82.563	-60
AD076A	596,276.3	6,094,176.2	1429.4	78.6	82.563	-50
AD077	596,298.7	6,094,318.7	1447.8	85.2	280.25	-50
AD078	596,364.2	6,094,353.2	1440.8	89.0	95.563	-50
AD079	596,315.7	6,094,396.8	1452.0	30.1	276.25	-50
AD079A	596,316.0	6,094,396.9	1452.0	77.1	276.25	-53
ARC012	596,233.1	6,094,159.1	1437.5	73.0	96.563	-50.2
ARC013	596,438.3	6,094,500.1	1445.2	120.0	268.25	-59.5
ARC014 ARC015	596,246.9 596,407.6	6,094,239.2 6,094,500.9	1442.9 1447.1	143.0 54.0	95.563 268.25	-59 -59.4
ARC015 ARC016	596,407.6	6,094,240.0	1447.1	90.0	266.25 94.563	-59.4 -56.1
ARC010 ARC017	596,303.0	6,094,346.3	1450.0	66.0	260.25	-30.1 -49
ARC018	596,305.7	6,094,178.1	1424.6	12.0	91.563	-70
AUD001	596,260.9	6,094,264.1	1330.3	203.3	89.563	0.5
AUD002	596,259.8	6,094,262.9	1331.2	133.4	138.13	29.5
AUD003	596,259.8	6,094,263.2	1329.3	152.0	139.13	-54
AUD004	596,260.2	6,094,265.2	1331.9	106.9	25.516	50
AUD005	596,251.7	6,094,366.1	1328.7	184.5	85.063	21
AUD006	596,248.4	6,094,365.5	1328.0	87.2	237.13	1
DDH034	596,234.5	6,094,221.4	1440.4	250.5	102.56	-50
DDH035	596,233.9	6,094,221.5	1440.4	232.8	102.56	-70
DDH036	596,251.1	6,094,116.0	1424.0	97.7	102.56	-61
DDH037	596,251.1	6,094,116.0	1424.0	170.0	102.56	-75
GAB043	596,275.0	6,094,128.0	1420.0	18.0	110.06	-61
GAB044	596,498.0	6,093,978.0	1377.0	25.0	264.25	-45
GAB045	596,347.0	6,094,341.0	1445.0	25.0	272.25	-50
GAB046	596,379.0	6,094,299.0	1426.0	25.0	268.25	-49
GAB047	596,417.0	6,094,280.0	1413.0	25.0	268.25	-46
GAB048 GAB049	596,443.0 596,410.0	6,094,278.0 6,094,400.0	1408.0 1432.0	25.0 25.0	270.25 270.25	-47 -46
GAB049 GAB050	596,320.0	6,094,443.0	1452.0	25.0	262.25	- 4 0 -53
GRC039	596,401.0	6,094,479.0	1450.0	30.0	270.25	-60
GRC040	596,390.0	6,094,501.0	1450.0	36.0	270.25	-60
GRC041	596,406.0	6,094,521.0	1450.0	66.0	270.25	-60
GRC042	596,408.0	6,094,586.0	1450.0	45.0	270.25	-60
GRC053	596,255.0	6,094,130.0	1426.8	102.0	90.063	-50
GRC054	596,270.0	6,094,210.0	1437.4	90.0	90.063	-60
GRC055	596,272.0	6,094,280.0	1446.0	54.0	90.063	-60
GRC056	596,230.0	6,094,165.0	1437.8	137.0	90.063	-65
GRC057	596,315.0	6,094,340.0	1449.0	108.0	250.13	-60
GRC058	596,420.0	6,094,450.0	1432.0	42.0	270.25	-55
GRC059	596,420.0	6,094,415.0	1439.0	54.0	270.25	-55
GRC060	596,200.0	6,094,300.0	1425.0	163.0	90.063	-65
GRC061	596,195.0	6,094,200.0	1440.0	180.0	90.063	-65
MRC13069	596,382.0	6,094,479.0	1448.0	120.0	90.063	-60
MRC13070	596,432.0	6,094,576.0	1445.0	120.0	270.25	-60
MRC13075	596,380.0	6,094,481.0	1448.0	150.0	270.25	-50
49				4,360.2	m	
CALEDONIAN						
AD080	596,930.3	6,094,321.7	1407.5	51.0	97.563	-60
AD081	596,977.1	6,094,189.6	1414.2	51.0	99.563	-60
ARC029	596,915.6	6,094,681.5	1415.3	72.0	268.25	-46.5
ARC030	597,049.1	6,094,658.8	1433.7	83.0	266.25	-45.8
ARC031	597,049.9	6,094,581.3	1423.6	84.0	270.25	-49.1

Drill hole	Easting (m)	Northing (m)	Elevation (m)	Depth (m)	Azimuth (°)	Dip (°)
DDH028	596,971.1	6,094,775.6	1425.0	217.0	282.25	-54
DDH029	596,971.7	6,094,775.5	1424.0	217.0	282.25	-74
DDH030	596,963.5	6,094,661.2	1420.7	149.0	282.25	-54
DDH031	596,959.5	6,094,676.3	1420.7	212.0	282.25	-74
DDH032	596,983.0	6,094,586.7	1418.4	167.0	276.25	-50
DDH033	596,983.6	6,094,586.5	1418.4	225.9	276.25	-70
GAB040	596,940.0	6,094,178.0	1412.0	25.0	90.063	-45
GAB041	596,955.0	6,094,179.0	1413.0	25.0	94.063	-46
GAB042	596,973.0	6,094,179.0	1415.0	25.0	90.063	-45
GAB053	596,909.0	6,094,380.0	1407.5	25.0	94.063	-44.5
GAB054	596,929.0	6,094,379.0	1409.1	25.0	83.063	-45
GAB055	597,005.0	6,094,690.0	1428.0	25.0	90.063	-44
GAB056	597,020.0	6,094,690.0	1431.0	25.0	94.063	-43
GAB057	597,016.0	6,094,795.0	1430.5	25.0	270.25	-49
GAB058	597,001.0	6,094,795.0	1428.0	25.0	260.25	-46
GRC038	596,953.9	6,094,657.4	1418.6	140.0	270.25	-55
MAB0001	596,974.0	6,094,460.0	1414.1	17.5	101.56 100.56	-60
MAB0002 MAB0003	596,979.0 596,983.0	6,094,460.0 6,094,459.0	1414.5 1414.8	13.9 17.5	99.563	-60 -60
MAB0003	596,990.0	6,094,458.0	1415.4	13.9	106.56	-60
MAB0004 MAB0005	596,995.0	6,094,457.0	1415.4	24.7	120.56	-60
MAB0006	597,003.0	6,094,455.0	1416.9	15.7	107.56	-60
MAB0007	597,009.0	6,094,454.0	1417.5	10.3	97.563	-60
MAB0008	597,013.0	6,094,454.0	1417.9	15.7	108.56	-60
MAB0009	597,019.0	6,094,454.0	1418.6	13.9	104.56	-60
MAB0010	597,022.0	6,094,453.0	1418.9	13.9	90.563	-60
MAB0011	597,026.0	6,094,453.0	1419.3	17.5	97.563	-60
MAB0012	597,037.0	6,094,450.0	1420.8	17.5	100.56	-60
MAB0013	597,042.0	6,094,448.0	1421.6	24.7	98.063	-60
MAB0014	597,050.0	6,094,446.0	1422.8	13.9	96.563	-60
MAB0015	596,954.0	6,094,463.0	1412.1	13.9	98.063	-60
MAB0016	596,960.0	6,094,463.0	1412.9	13.9	103.56	-60
MAB0017	596,965.0	6,094,462.0	1413.4	24.7	94.563	-60
MAB0018	596,948.0	6,094,464.0	1411.4	13.9	101.56	-60
MAB0019	596,942.0	6,094,465.0	1411.0	13.9 24.7	98.063	-60
MAB0020 MAB0021	596,898.0	6,094,732.0 6,094,732.0	1413.4 1414.3	24.7 24.7	97.563 90.063	-60
MAB0021	596,906.0 596,916.0	6,094,733.0	1414.5	24.7 24.7	91.563	-60 -60
MAB0022 MAB0023	596,929.0	6,094,734.0	1417.1	17.5	96.563	-60
MAB0024	596,939.0	6,094,736.0	1418.8	19.3	89.563	-60
MAB0025	596,947.0	6,094,735.0	1420.1	11.5	92.563	-60
MAB0026	596,880.0	6,094,837.0	1413.2	17.5	97.563	-60
MAB0027	596,892.0	6,094,838.0	1415.2	21.1	91.563	-60
MAB0028	596,901.0	6,094,838.0	1416.3	24.7	91.563	-60
MAB0029	596,910.0	6,094,840.0	1417.4	21.1	93.063	-60
MAB0030	596,869.0	6,094,843.0	1414.4	22.9	92.563	-60
MAB0031	596,858.0	6,094,848.0	1414.7	24.7	93.563	-60
MAB0032	596,542.0	6,094,931.0	1465.9	24.7	80.563	-60
MAB0033	596,552.0	6,094,931.0	1466.2	24.7	71.563	-60
MAB0034	596,543.0	6,094,931.0	1466.0	21.5	264.25	-60
MRC13004	596,879.0	6,094,703.0	1411.0	124.0	90.063	-60
MRC13008	596,893.0	6,094,750.0	1413.0	44.0	90.063	-60
MRC13010	596,891.0	6,094,800.0	1414.0	132.0	90.063	-54
TGRC026	596,905.0	6,094,146.0	1409.9	8.0	90.063	-60
TGRC027 TGRC028	596,931.0 596,917.0	6,094,176.0 6,094,216.0	1411.6 1407.7	15.0 10.0	90.063 90.063	-60 -60
TGRC029	596,937.0	6,094,251.0	1406.7	38.0	90.063	-50
TGRC030	596,926.0	6,094,299.0	1405.8	19.0	90.063	-50
TGRC031	596,919.0	6,094,348.0	1407.4	34.0	90.063	-50
TGRC032	596,916.0	6,094,401.0	1408.5	11.0	90.063	-50
TGRC034	596,961.0	6,094,607.0	1416.6	24.0	270.25	-60
TGRC035	596,961.0	6,094,622.0	1417.4	50.0	270.25	-60
TGRC036	596,956.0	6,094,651.0	1418.6	50.0	270.25	-60
TGRC037	596,950.0	6,094,668.0	1418.7	11.0	270.25	-60
TGRC040	597,067.0	6,094,178.0	1426.7	40.0	90.063	-60
TGRC041	596,945.0	6,094,299.0	1407.5	20.0	270.25	-65

Drill	Easting	Northing	Elevation	Depth	Azimuth (°)	Dip (°)
TGRC047	(m)	(m) 6,094,220.0	(m) 1410.9	(m)	270.25	-60
	596,959.0			9.0		
TGRC048	596,902.0	6,094,422.0	1407.4	10.0	90.063 270.25	-60
TGRC049	596,976.0	6,094,777.0	1424.6	13.0		-60
TGRC050	596,953.0	6,094,670.0	1419.2	47.0	270.25	-60
75				3,239.1	m	
DONKEY HILI	<u>L</u>					
AD045	596,848.9	6,095,346.4	1465.0	49.5	282.25	-50
ARC019	596,681.9	6,095,779.3	1499.0	60.0	90.563	-60
ARC021	596,654.8	6,095,772.9	1498.3	100.0	90.563	-60
ARC026	596,833.2	6,095,102.4	1438.1	84.0	252.13	-79.8
ARC026A	596,835.8	6,095,100.9	1437.8	28.0	90.563	-80
ARC027	596,831.5	6,095,102.2	1438.1	54.0	256.25	-50
ARC034	596,882.5	6,095,102.5	1432.5	72.0	264.25	-48.8
ARC035	596,679.3	6,095,699.5	1499.6	72.0	92.563	-60.5
ARC036	596,640.1	6,095,701.0	1495.9	156.0	92.563	-59.5
ARC037	596,616.0	6,095,781.4	1495.5	131.0	87.063	-55.2
ARC038	596,680.0	6,095,860.1	1494.2	59.0	99.063	-76.2
ARC039	596,617.5	6,095,781.5	1495.6	157.0	92.563	-55.2
ARC040	596,618.8	6,095,864.2	1491.6	160.0	97.563	-59.6
ARC047	596,632.7	6,095,820.2	1495.7	120.0	88.563	-53
ARC048	596,567.3	6,095,777.8	1488.9	246.0	89.563	-57
ARC049	596,651.0	6,095,740.5	1497.5	120.0	99.063	-56
CD001	595,867.8	6,096,073.6	1415.0	48.0	276.25	-60
GAB059	596,728.0	6,095,235.0	1468.0	25.0	270.25	-46
GAB074	596,824.0	6,095,200.0	1447.0	20.0	270.25	-42
GAB075	596,824.0	6,095,259.0	1457.7	25.0	270.25	-43
GAB076	596,830.0	6,095,335.0	1467.0	25.0	270.25	-45
GAB077	596,740.0	6,095,555.0	1517.0	25.0	90.063	-41
GAB078	596,595.0	6,095,450.0	1529.0	25.0	90.063	-45
GAB079	596,608.0	6,095,447.0	1528.0	23.0	90.063	-45
GAB080	596,623.0	6,095,445.0	1527.0	25.0	90.063	-45
GRC024	596,685.7	6,095,759.0	1499.3	42.0	91.063	-56.5
GRC025	596,690.8	6,095,800.0	1498.0	38.0	82.063	-50
GRC026	596,645.8	6,095,762.1	1497.8	117.0	94.063	-60
GRC028	596,762.2	6,095,760.9	1493.7	180.0	270.25	-60
GSD002	596,567.3	6,095,777.8	1488.9	276.0	89.563	-57
MRC13013	596,658.0	6,095,453.0	1525.0	130.0	270.25	-60
MRC13016	596,758.0	6,095,755.0	1495.0	125.0	270.25	-50
MRC13018	596,667.0	6,095,728.0	1499.0	150.0	90.063	-50
MRC13023	596,774.0	6,095,806.0	1490.0	164.0	270.25	-60
MRC13030	596,740.0	6,095,999.0	1487.0	160.0	270.25	-50
35				3,291.5	m	

APPENDIX 3 - DRILL HOLE VEIN INTERCEPTS - BY DEPOSIT

The following listings give all drill hole vein intercepts within the three deposit areas. Intercepts are listed by vein, from west to east. Vein intercepts may have had multiple sample intervals and the gold values are the composits of all samples within each vein.

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
CURRAJONG		` '		νο ,
CURA				
AD042	59.50	60.50	1.00	0.15
AD042	92.50	93.85	1.35	0.27
AD076A	37.00	39.00	2.00	0.46
AD077 AD077	38.60 73.90	39.60 76.90	1.00 3.00	0.59 0.42
ARC012	8.00	16.00	8.00	0.42
ARC013	60.00	61.00	1.00	0.17
ARC014	9.00	12.00	3.00	0.24
ARC014	135.00	136.00	1.00	0.05
ARC014	111.00	112.00	1.00	0.18
ARC015 ARC016	40.00 22.00	44.00 24.00	4.00 2.00	0.04 0.06
AUD001	176.15	177.40	1.25	0.04
AUD001	4.85	5.30	0.45	0.40
AUD001	136.00	137.00	1.00	0.00
AUD001	55.40	57.40	2.00	0.03
AUD002	84.00	87.00	3.00	0.72
AUD003 AUD003	150.00 4.00	152.00 6.00	2.00 2.00	0.05 0.09
AUD003	70.75	71.30	0.55	0.03
AUD003	99.60	99.90	0.30	0.44
AUD004	67.00	67.70	0.70	0.24
AUD004	104.00	104.80	0.80	0.07
AUD006	43.40	43.70	0.30	0.02
DDH034 DDH035	174.20 174.00	176.10 174.40	1.90 0.40	0.07 0.11
DDH035	38.60	38.90	0.40	0.11
DDH035	210.50	212.65	2.15	0.11
DDH035	145.75	148.35	2.60	0.24
DDH035	79.00	80.25	1.25	0.30
DDH037 GAB044	90.20 11.00	91.00 12.00	0.80 1.00	0.24
GAB044 GAB044	1.00	2.00	1.00	0.04 0.38
GAB046	9.00	10.00	1.00	0.03
GAB046	0.00	1.00	1.00	0.04
GAB049	6.00	7.00	1.00	0.29
GRC060	30.00	32.00	2.00	0.10
GRC061 MRC13069	110.00 41.00	112.00 43.00	2.00 2.00	0.21 0.19
MRC13069	0.00	1.00	1.00	0.19
MRC13070	119.00	120.00	1.00	0.01
MRC13070	71.00	72.00	1.00	0.01
MRC13070	87.00	88.00	1.00	0.01
Mean_Value	71.60	73.16	1.56	0.18
Max_Value Min_Value	210.50 0.00	212.65 1.00	8.00 0.30	0.72 0.00
No. Samples	43.00	43.00	43.00	43.00
CURB				10.00
AD078	37.00	39.00	2.00	0.12
AD079	9.80	11.80	2.00	0.02
AD079A	35.10	37.10	2.00	0.20
ARC014 AUD002	139.00 76.10	140.00 76.90	1.00 0.80	0.04 0.44
AUD002 AUD003	93.60	93.85	0.80	0.44
AUD006	81.20	81.40	0.20	0.66
DDH035	143.75	144.10	0.35	0.35
DDH035	50.20	50.55	0.35	0.83
DDH035	18.60	22.80	4.20	1.14
GAB044 GAB046	3.00	7.00 15.00	4.00	0.05
GRC060	13.00 48.00	15.00 50.00	2.00 2.00	0.05 0.07
MRC13069	6.00	8.00	2.00	0.07
MRC13070	36.00	37.00	1.00	0.05

Vein Roof Floor Thick Au Hole (m) (m) (m) (g/t))
M	
	20
	.30 .14
	.02
No. Samples 15.00 15.00 15.00 15.	.00
CUW8 AD077 63.80 64.80 1.00 0.	.29
	.29
	.29
_	.29
CUW7	.00
	.05
	.01 .22
	.13
	.41
	.04
DDH036 37.00 38.00 1.00 DDH037 57.00 58.10 1.10 0.	.35
	.36
	.02
	.10 .03
	.10
	.39
_	.23 .41
_	.01
·	.00
CU_C AD042 44.20 46.50 2.30 0.	5 1
	.51 .03
AD076A 12.30 14.30 2.00 0.	.40
	.90 .15
	.03
	.47
	.08
	.07 .34
AUD002 0.00 1.45 1.45 0.	.19
	.07 .19
AUD005 1.00 3.00 2.00	. 19
	.38
	.98
DDH036 50.00 51.00 1.00 DDH037 59.20 64.70 5.50 2.	.05
GAB043 18.00 18.10 0.10	
	.22
	.11 .41
GRC056 84.00 86.00 2.00 0.	.27
	.19
	.59 .83
	.98
	.03
No. Samples 25.00 25.00 25.00 22.	.00
-	.37
AD070A 04.00 00.00 40.70	.48
AD077 21.60 26.60 5.00 1.	.60 .41

Hole	0 41 0 31 0 15 0 46 5 31 0 52 0 6 0 13 0 14 0 74 0 36 0 50 0 36 0 16 0 154 0 1) (m) 2.00	1.11 0.22 3.41 0.95 1.63 0.94 0.294 1.75 0.63 0.54 0.20 1.20 0.1.54 0.20 1.54 0.20 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.30 0.30 0.49 0.22 0.36 0.37 0.30 0.30 0.49 0.22 0.36 0.37 0.37 0.38 0.39 0.30 0.3
ARC016 26.0 ARC017 20.0 ARC017 20.0 AUD001 9.3 AUD002 17.0 AUD003 9.3 AUD004 9.2 AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC056 88.0 GRC057 68.0 GRC057 68.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC017 12.0	0 41 0 31 0 15 0 46 5 31 0 52 0 6 0 13 0 14 0 74 0 36 0 50 0 36 0 16 0 154 0 1	.00	1.11 0.22 3.41 0.95 1.63 0.94 0.2.94 1.75 0.63 0.54 0.20 1.20 0.154 0.30 0.49 0.22 0.36 0.97 3.41 0.23 0.097 3.41 0.23 0.00 0.36 0.97 3.41 0.23 0.00 0.36 0.36 0.37 0.49 0.20 0.36 0.37 0.49 0.20 0.36 0.37 0.30 0.30
ARC017 20.0 AUD001 9.3 AUD002 17.0 AUD003 9.3 AUD004 9.2 AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC056 88.0 GRC057 68.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD076A 44.9 AD079 23.8 AD079A 29.1 ARC016 47.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC017 12.0 AUD003 9.3	0 31 0 15 0 46 5 31 0 52 0 13 0 14 0 74 0 85 0 56 0 56 0 16 0 154 0 154 0 154 0 154 0 25 0 49 0 31 0 48 0 56 0	.00 11.00 .95 6.65 .75 29.75 .25 21.90 .00 42.80 .00 13.90 .00 17.10 .80 15.40 .80 17.00 .00 20.	0.22 3.41 0.95 1.63 0.94 0.2.94 1.75 0.063 0.54 0.20 1.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.22 0.36 0.97 3.41 0.23 0.97 3.41 0.23 0.97 3.41 0.20 0.3
AUD001 9.3 AUD002 17.0 AUD003 9.3 AUD004 9.2 AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC056 88.0 GRC057 68.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD076A 44.9 AD077 15.6 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC017 12.0 AUD003 9.3	0 15 0 46 5 31 0 52 0 13 0 83 0 83 0 116 0 56 0 56 0 56 0 16 0 154 0 154 0 154 0 24 5 78 0 49 0 30 14 4 9 0 16 0 31 0 48 0 31 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1	8.95 6.65 6.75 29.75 .25 21.90 .00 42.80 .00 3.00 .00 13.90 .00 15.40 .80 15.40 .80 17.00 .00 20.00 .00 20.00 .00 20.00 .00 20.00 .00 20.00 .52 14.79 .00 24.00 3.50 1.85 .80 4.90 3.50 1.85 .80 4.90 .80 2.00 .10 2.00 .00 10.00	3.41 0.95 1.63 0.94 0 2.94 1.75 0 0.63 0 0.54 0 0.20 1.54 0 0.30 0 0.49 0 0.22 0 0.36 0 0.97 3.41 0 0.20 0 23.00 0 0.84 0 0.20 0 0.30 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AUD002 17.0 AUD003 9.3 AUD004 9.2 AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC057 68.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD076A 44.9 AD077 15.6 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC017 12.0 ARC017 12.0 AUD005 10.0	0 46 5 31 0 52 0 13 0 83 0 83 0 84 0 74 0 56 0 56 0 56 0 16 0 154 0 154 0 154 0 154 0 16 0 25 0 49 0 16 0 31	3.75 29.75 .25 21.90 .00 42.80 .00 3.00 .00 13.90 .00 17.10 .80 15.40 .80 17.00 .00 10.00 .00 20.00 .00 28.00 .00 20.00 .00 20.00 .00 20.00 .52 14.75 .00 24.00 3.50 1.85 .80 4.90 3.60 1.00 .80 4.90 .60 1.00 .80 2.00 .10 2.00 .00 10.00	0.95 1.63 0.94 0.2.94 1.75 0.63 0.54 0.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.23.00 0.84 0.174 0.14 0.35 0.035
AUD004 9.2 AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD079 23.8 AD079A 29.1 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC017 12.0	0 52 0 13 0 83 0 114 0 74 0 85 0 56 0 56 0 16 0 78 0 144 0 154 3 64 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	2.00 42.80 3.00 3.00 3.00 13.90 3.00 17.10 3.80 15.40 3.80 17.00 3.00 10.00 3.00 20.00 3.00 10.00 3.00 20.00 3.00 20.00 3.00 20.00 3.52 14.79 3.00 24.00 3.50 1.85 3.50 1.85 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00 3.60 1.00	0.94 0.94 0.94 0.95 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
AUD005 10.0 DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC057 68.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018 29.4	0 13 0 83 0 114 0 74 0 85 0 56 0 50 0 16 0 154 0 154 3 64 0 154 0 24 5 78 0 49 0 25 0 30 1 30 0 24	3.00 3.00 3.00 13.90 3.00 17.10 3.80 15.40 3.80 17.00 3.00 10.00 3.00 20.00 3.00 20.00 3.00 20.00 3.00 20.00 3.00 20.00 3.52 14.79 3.00 24.00 3.50 1.85 3.50 1.85 3.60 1.00 3.80 4.90 3.60 1.00 3.80 2.00 3.10 2.00 3.00 10.00	2.94 1.75 0.63 0.54 0.20 1.54 0.30 0.49 0.22 0.36 0.36 0.22 0.36 0.39 0.22 0.36 0.22 0.36 0.23 0.23 0.23 0.23 0.23
DDH034 69.1 DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018 29.4	0 83 0 114 0 74 0 85 0 56 0 56 0 57 0 114 0 154 3 64 0 154 0 13 0 24 5 78 0 49 0 31 0 94 0 14	3.00 13.90 .00 17.10 .80 15.40 .80 17.00 .00 10.00 .00 20.00 .00 20.00 .00 20.00 .00 20.00 .00 20.00 .52 14.79 .00 24.00 3.50 1.85 3.60 1.00 3.80 4.90 .80 2.00 .10 2.00 .00 10.00	2.94 1.75 0.63 0.54 0.20 1.20 0.30 0.49 0.22 0.36 0.97 3.41 0.20 23.00 0.84 0.174 0.14 0.35 0.03
DDH035 96.9 DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC054 30.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018	0 114 0 74 0 85 0 56 0 50 0 36 0 116 0 154 0 154 0 154 0 24 5 78 0 49 0 25 0 31 0 24	.00 17.10 .80 15.40 .80 15.40 .80 17.00 .00 10.00 .00 20.00 .00 28.00 .00 20.00 .00 20.00 .00 20.00 .00 20.00 .00 24.00 .00 24.00 .00 26.00 1.85 .00 1.85 .00 1.85 .00 1.85 .00 1.85 .00 1.00 .00 10.00 .00 10.00 .00 10.00	1.75 0.63 0.54 0.20 1.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.23.00 0.84 1.74 0.14 0.35 0.03
DDH036 59.4 DDH037 68.8 GRC053 46.0 GRC054 30.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018	0 74 0 85 0 56 0 50 0 36 0 116 0 154 0 154 0 154 0 24 5 78 0 49 0 16 0 31 0 25 0 31 0 48 0 48 0 48	.80	0.63 0.54 0.20 1.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.23 0.36 0.97 0.49 0.22 0.36 0.97 0.49 0.21 0.30 0.49 0.49 0.49 0.49 0.30 0.49
GRC053 46.0 GRC054 30.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD076A 44.9 AD077 15.6 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018 2.0	0 56 0 50 0 36 0 116 0 78 0 144 0 154 0 154 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 94 0 14	3.00 10.00 3.00 20.00 3.00 4.00 3.00 28.00 3.00 10.00 3.00 20.00 3.52 14.79 3.00 24.00 3.50 1.85 3.80 4.90 3.80 2.00 3.10 2.00 3.00 10.00	0.20 1.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.20 0.30 0.49 0.49 0.21 0.36 0.49
GRC054 30.0 GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018 2.0	0 50 0 36 0 116 0 78 0 144 0 154 3 64 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	0.00 20.00 0.00 4.00 0.00 28.00 0.00 10.00 0.00 20.00 0.52 14.79 0.00 24.00 0.50 24.00 0.50 1.85 0.80 4.90 0.60 1.00 0.80 2.00 0.10 2.00 0.00 10.00	1.20 1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.23.00 0.84 1.74 0.14 0.35 0.03
GRC055 32.0 GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 36 0 116 0 78 0 144 0 154 3 64 0 15 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	3.00 4.00 3.00 28.00 3.00 10.00 3.00 20.00 3.00 20.00 3.52 14.79 3.00 24.00 3.50 1.85 3.80 4.90 3.60 1.00 3.80 4.90 3.80 2.00 3.10 2.00 3.00 10.00	1.54 0.30 0.49 0.22 0.36 0.97 3.41 0.20 0.23.00 0.84 1.74 0.14 0.35 0.03
GRC056 88.0 GRC057 68.0 GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC017 12.0 ARC018 2.0	0 116 0 78 0 144 0 154 3 64 0 15 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	3.00 28.00 3.00 10.00 3.00 20.00 3.00 20.00 3.52 14.75 3.00 24.00 3.50 1.85 3.80 4.90 3.60 1.00 3.80 2.00 3.10 2.00 3.00 10.00	0.30 0.49 0.22 0.36 0.97 0.341 0.20 0.23.00 0.84 0.174 0.14 0.35 0.03
GRC060 124.0 GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 144 0 154 3 64 0 154 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	.00 20.00 .00 20.00 .52 14.79 .00 42.80 .00 24.00 .55 1.85 .80 4.90 .60 1.00 .80 2.00 .10 2.00	0.49 0.22 0.36 0.97 0.20 0.23.00 0.23.00 0.84 1.74 0.14 0.35 0.03
GRC061 134.0 Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 154 3 64 0 154 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	.00 20.00 .52 14.79 .00 42.80 .00 24.00 3.50 1.85 .80 4.90 .60 1.00 .80 2.00 .10 2.00	0.36 0.97 0.341 0.20 0.33.00 0.84 1.74 0.14 0.35 0.03
Mean_Value 49.7 Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A 76.6 AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	3 64 0 154 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	.52 14.79 .00 42.80 .00 24.00 .00 24.00 .550 1.85 .80 4.90 .60 1.00 .80 2.00 .10 2.00	0.97 3.41 0.20 23.00 6 0.84 1.74 0 0.14 0 0.35 0 0.03
Max_Value 134.0 Min_Value 9.2 No. Samples 24.0 CU_A 76.6 AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 154 0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	.00 42.80 .00 24.00 .00 24.00 .550 1.85 .80 4.90 .60 1.00 .80 2.00 .10 2.00	3.41 0.20 23.00 6 0.84 1.74 0 0.14 0 0.35 0 0.03
Min_Value 9.2 No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 13 0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	3.00 2.80 3.50 1.85 3.80 4.90 3.60 1.00 3.80 2.00 3.10 2.00 3.00 10.00	0.20 23.00 6 0.84 1.74 0 0.14 0 0.35 0 0.03
No. Samples 24.0 CU_A AD042 76.6 AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 24 5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	3.50 1.85 3.80 4.90 3.60 1.00 3.80 2.00 3.10 2.00 3.00 10.00	23.00 0.84 1.74 0.14 0.35 0.03
CU_A AD042 76.6 AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	5 78 0 49 0 16 0 25 0 31 0 94 0 48 0 14	3.50 1.85 3.80 4.90 3.60 1.00 3.80 2.00 .10 2.00 .00 10.00	0.84 0 1.74 0 0.14 0 0.35 0 0.03
AD076A 44.9 AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 49 0 16 0 25 0 31 0 94 0 48 0 14	0.80 4.90 0.60 1.00 0.80 2.00 0.10 2.00 0.00 10.00	1.74 0.14 0.35 0.03
AD077 15.6 AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 16 0 25 0 31 0 94 0 48 0 14	5.60 1.00 5.80 2.00 .10 2.00 .00 10.00	0.14 0.35 0.03
AD079 23.8 AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 25 0 31 0 94 0 48 0 14	5.80 2.00 .10 2.00 .00 10.00	0.35
AD079A 29.1 ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 31 0 94 0 48 0 14	.10 2.00 .00 10.00	0.03
ARC014 84.0 ARC016 47.0 ARC017 12.0 ARC018 2.0	0 94 0 48 0 14	.00 10.00	
ARC017 12.0 ARC018 2.0	0 14	3.00 1.00	
ARC018 2.0			
	0 8	.00 2.00	
A00001 17.2		3.00 6.00 .80 4.55	
AUD002 53.1		.10 7.95	
AUD003 39.6		.90 11.25	0.19
AUD004 83.0		5.80 2.80	
AUD005 25.0		3.00	
DDH035 125.1 DDH036 84.0		0.00 3.90 0.90 5.90	
DDH037 129.0		0.00 1.00	
GRC053 66.0	0 74	.00 8.00	0.28
GRC054 60.0		2.00	
GRC055 40.0		2.00	
GRC056 122.0 GRC057 62.0		2.00 10.00 00 2.00	
GRC060 162.0		5.00 3.00	
Mean_Value 61.0		5.27 4.27	
Max_Value 162.0		.00 11.25	
Min_Value 2.0		3.00 1.00	
No. Samples 23.0	0 23	3.00 23.00	21.00
AD042 83.5	0 91	.50 8.00	1.08
AD076A 53.7	0 54	.70 1.00	0.08
AD079 17.8		2.00	
ARC014 99.0		2.00 3.00	
ARC016 56.0 AUD001 31.0		0.00 4.00 5.00 5.00	
AUD002 91.4		5.25 4.85	
AUD003 88.7	0 92	2.00 3.30	16.44
AUD004 94.5		1.25	
AUD005 51.2 DDH034 109.8		5.60 5.35 5.00 9.20	
DDH034 109.6 DDH035 160.0		0.00 9.20 0.00 4.00	
GAB050 21.0		.00 3.00	
GRC053 76.0	0 88	3.00 12.00	0.30
GRC054 68.0		2.00	
GRC055 46.0		2.00 6.00	
GRC057 46.0 MRC13075 133.0		0.00 4.00 5.00 2.00	
Mean_Value 73.7		3.14 4.44	
Max_Value 160.0	0 164	.00 12.00	16.44
Min_Value 17.8	0 19	.80 1.00	0.00

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
No. Samples	18.00	18.00	18.00	18.00
CU_5	400.00	405.00	2.04	0.05
AD042 AD076A	102.39 65.30	105.60 66.90	3.21 1.60	0.05 0.11
AD076A AD079	0.00	2.00	2.00	0.11
ARC014	128.00	130.00	2.00	0.94
ARC016	73.00	74.00	1.00	0.02
AUD001	43.30	48.40	5.10	0.48
AUD002	109.50	111.00	1.50	0.77
AUD003 AUD005	115.20	125.45	10.25	0.58
AUD005 AUD005	58.35 161.30	60.30 161.80	1.95 0.50	0.08 0.00
DDH035	184.00	188.30	4.30	0.15
GAB050	0.00	2.00	2.00	0.19
GRC054	80.00	84.00	4.00	0.61
MRC13075	116.00	120.00	4.00	0.21
Mean_Value	88.31	91.41	3.10	0.38
Max_Value Min Value	184.00 0.00	188.30 2.00	10.25 0.50	0.94 0.00
No. Samples	14.00	14.00	14.00	14.00
CU 6	11.00	1 1.00	11.00	1 1.00
ARC016	88.00	90.00	2.00	0.03
AUD001	63.00	64.00	1.00	0.61
AUD002	120.40	124.40	4.00	0.07
AUD003	138.00	143.75	5.75	0.35 0.35
AUD005 DDH035	73.80 206.60	77.55 207.55	3.75 0.95	0.35 5.83
GAB045	19.00	25.00	6.00	0.11
MRC13075	103.00	105.00	2.00	0.21
Mean_Value	101.47	104.66	3.18	0.43
Max_Value	206.60	207.55	6.00	5.83
Min_Value	19.00	25.00	0.95	0.03
No. Samples	8.00	8.00	8.00	8.00
CUE8 AUD001	78.00	80.00	2.00	0.24
AUD005	86.00	87.75	1.75	0.14
DDH034	157.10	160.10	3.00	0.41
DDH035	227.10	228.30	1.20	1.07
GAB045	9.00	11.00	2.00	0.04
MRC13075	82.00	85.00	3.00	0.18
Mean_Value Max Value	106.53 227.10	108.69 228.30	2.16 3.00	0.30 1.07
Min Value	9.00	11.00	1.20	0.04
No. Samples	6.00	6.00	6.00	6.00
CUE7				
AUD001	88.10	88.65	0.55	6.89
AUD005	97.85	101.35	3.50	0.09
DDH034	167.70	168.60	0.90	2.84
GAB045 MRC13075	0.00 59.00	1.00 61.00	1.00 2.00	0.12 0.06
Mean Value	82.53	84.12	1.59	0.87
Max_Value	167.70	168.60	3.50	6.89
Min_Value	0.00	1.00	0.55	0.06
No. Samples	5.00	5.00	5.00	5.00
CUE6	5.00	7.00	0.00	0.00
AD078 AUD001	5.00 91.50	7.00 92.45	2.00	0.09
AUD001 AUD005	91.50 110.55	92.45 111.80	0.95 1.25	0.05 0.47
DDH034	189.40	190.00	0.60	0.00
GAB046	19.00	21.00	2.00	0.04
MRC13075	39.00	40.00	1.00	0.07
Mean_Value	75.74	77.04	1.30	0.12
Max_Value	189.40	190.00	2.00	0.47
Min_Value No. Samples	5.00 6.00	7.00 6.00	0.60 6.00	0.00 6.00
CUE5	0.00	0.00	0.00	0.00
AD078	13.00	17.00	4.00	0.57
AUD001	106.00	108.00	2.00	0.00
AUD005	123.55	125.60	2.05	0.55
DDH034	206.20	207.90	1.70	0.08
GAB046	3.00	6.00	3.00	0.03
MRC13075	20.00	21.00	1.00	0.05
Mean_Value	78.62	80.92	2.29	0.27

Vein	Roof	Floor	Thick	Au (a/t)	
Hole	(m)	(m)	(m)	(g/t)	
Max_Value	206.20	207.90	4.00	0.57	
Min_Value	3.00	6.00	1.00	0.00	
No. Samples	6.00	6.00	6.00	6.00	
CUE4					
AD078	29.00	31.00	2.00	0.12	
AUD001	117.95	119.35	1.40	0.00	
AUD005 DDH034	131.50 225.60	131.90 226.60	0.40 1.00	0.00	
MRC13075	8.00	10.00	2.00	1.17	
Mean Value	102.41	103.77	1.36	0.38	
Max Value	225.60	226.60	2.00	1.17	
Min_Value	8.00	10.00	0.40	0.00	
No. Samples	5.00	5.00	5.00	5.00	
CUE3					
ARC015	29.00	34.00	5.00	4.27	
AUD001	145.10	145.45	0.35	0.00	
AUD005	154.85	155.45	0.60	0.00	
DDH034 GAB049	247.15	248.15	1.00 1.00	0.00 0.16	
GRC039	22.00 9.00	23.00 15.00	6.00	1.23	
GRC039	39.00	42.00	3.00	0.17	
GRC059	42.00	46.00	4.00	0.17	
MRC13069	23.00	24.00	1.00	0.04	
MRC13070	107.00	108.00	1.00	0.03	
Mean_Value	81.81	84.10	2.29	1.38	
Max_Value	247.15	248.15	6.00	4.27	
Min_Value	9.00	15.00	0.35	0.00	
No. Samples	10.00	10.00	10.00	10.00	
CUE2					
ARC013	80.00	84.00	4.00	0.28	
ARC015	21.00	22.00	1.00	1.99	
AUD001 GAB047	148.60	148.95	0.35	0.00	
GAB047 GAB049	7.00 10.00	8.00 12.00	1.00 2.00	0.03 0.24	
GRC039	0.00	6.00	6.00	0.24	
GRC041	15.00	24.00	9.00	0.10	
GRC058	40.00	42.00	2.00	0.06	
GRC059	36.00	38.00	2.00	0.27	
MRC13069	33.00	35.00	2.00	0.22	
MRC13070	95.00	96.00	1.00	0.01	
Mean_Value	44.15	46.90	2.76	0.23	
Max_Value	148.60	148.95	9.00	1.99	
Min_Value	0.00	6.00	0.35	0.00	
No. Samples	11.00	11.00	11.00	11.00	
ARC013	67.00	60.00	2.00	0.08	
ARC015	67.00 7.00	69.00 8.00	2.00 1.00	0.08	
AUD001	152.80	153.65	0.85	0.01	
AUD005	171.80	172.25	0.45	0.00	
GAB047	0.00	1.00	1.00	0.10	
GAB049	2.00	3.00	1.00	8.17	
GRC058	22.00	24.00	2.00	0.02	
GRC059	16.00	18.00	2.00	0.52	
MRC13069	47.00	48.00	1.00	1.78	
MRC13070	77.00	78.00	1.00	0.00	
Mean_Value	56.26	57.49	1.23	0.92	
Max_Value Min_Value	171.80 0.00	172.25 1.00	2.00 0.45	8.17	
No. Samples	10.00	10.00	10.00	0.00 10.00	
CUEM1	10.00	10.00	10.00	10.00	
AD078	83.00	85.00	2.00	0.06	
ARC013	56.00	57.00	1.00	0.35	
AUD001	162.00	163.00	1.00	0.00	
AUD005	177.70	177.90	0.20	0.00	
GRC058	10.00	12.00	2.00	0.06	
MRC13069	60.00	61.00	1.00	0.05	
MRC13070	52.00	55.00	3.00	0.07	
Mean_Value	85.81	87.27	1.46	0.08	
Max_Value	177.70	177.90	3.00	0.35	
Min_Value	10.00 7.00	12.00 7.00	0.20 7.00	0.00	
No. Samples	1.00	7.00	1.00	7.00	
ARC013	51.00	53.00	2.00	1 26	
ANGUIS	31.00	33.00	2.00	1.86	

Vein Hole	Roof (m)	Floor (m)	Thick	Au (a/t)
11016	(111)	(111)	(m)	(g/t)
AUD001	171.00	172.00	1.00	0.00
AUD005	182.20	183.05	0.85	0.31
GAB048	17.00	18.00	1.00	0.03
GRC058	2.00	4.00	2.00	0.18
MRC13069	67.00	68.00	1.00	0.21
MRC13070 Mean_Value	43.00	45.00	2.00	0.01
Max_Value	76.17 182.20	77.58 183.05	2.00	0.47 1.86
Min_Value	2.00	4.00	0.85	0.00
No. Samples	7.00	7.00	7.00	7.00
CUEM3				
ARC013	19.00	24.00	5.00	0.59
AUD001	179.80	182.00	2.20	0.73
GAB048	4.00	5.00	1.00	0.02
MRC13069	81.00	83.00	2.00	3.13
MRC13070	17.00	18.00	1.00	0.03
Mean_Value	60.16	62.40	2.24	0.97
Max_Value	179.80	182.00	5.00 1.00	3.13
Min_Value No. Samples	4.00 5.00	5.00 5.00	5.00	0.02 5.00
CUEM4	3.00	3.00	3.00	5.00
ARC013	16.00	17.00	1.00	0.07
AUD001	190.60	191.00	0.40	0.07
GAB044	21.00	22.00	1.00	0.04
MRC13069	93.00	94.00	1.00	0.02
MRC13070	4.00	5.00	1.00	0.01
Mean_Value	64.92	65.80	0.88	0.07
Max_Value	190.60	191.00	1.00	0.46
Min_Value	4.00	5.00	0.40	0.01
No. Samples	5.00	5.00	5.00	5.00
All veins				
Mean_Value	65.65	69.18	3.53	0.80
Max_Value	247.15	248.15	42.80	16.44
Min_Value No. Samples	0.00 268.00	1.00 268.00	0.10 268.00	0.00 261.00
No. Samples	200.00	200.00	200.00	201.00
CALEDONIAN				
CA_A DDH028	19.70	20.70	1.00	0.04
DDH028	131.00	20.70 131.30	1.00 0.30	0.04 0.03
DDH029	39.20	40.10	0.90	0.73
DDH030	117.10	118.60	1.50	0.13
DDH032	9.30	9.40	0.10	0.30
DDH032	132.30	132.40	0.10	0.42
DDH032	64.30	65.10	0.80	0.25
DDH032	57.60	58.30	0.70	0.02
DDH033	90.20	90.70	0.50	0.06
DDH033	108.60	109.50	0.90	0.08
GAB041	11.00	12.00	1.00	0.03
GAB056 MAB0003	7.00 10.30	8.00 12.10	1.00 1.80	0.04
MAB0003 MAB0009	4.90	12.10	5.40	0.00
MAB0010	6.70	8.50	1.80	0.00
MAB0010	3.10	6.70	3.60	0.01
MAB0013	10.30	12.10	1.80	0.03
MAB0017	13.90	15.70	1.80	0.01
MAB0032	12.10	17.50	5.40	0.08
MAB0033	1.30	4.90	3.60	I 0.17
MAB0034	21.10	21.50	0.40	0.02
	12.00	13.00	1.00 1.00	0.02
MRC13004			7 ()()	0.20
MRC13004	51.00	52.00		
MRC13004 MRC13004	51.00 77.00	78.00	1.00	0.03
MRC13004 MRC13004 MRC13008	51.00 77.00 38.00	78.00 41.00	1.00 3.00	0.03 0.55
MRC13004 MRC13004 MRC13008 MRC13010	51.00 77.00 38.00 118.00	78.00 41.00 119.00	1.00 3.00 1.00	0.03 0.55 0.04
MRC13004 MRC13004 MRC13008 MRC13010 TGRC027	51.00 77.00 38.00 118.00 12.00	78.00 41.00 119.00 13.00	1.00 3.00 1.00 1.00	0.03 0.55 0.04 0.05
MRC13004 MRC13004 MRC13008 MRC13010	51.00 77.00 38.00 118.00 12.00 2.00	78.00 41.00 119.00 13.00 3.00	1.00 3.00 1.00 1.00 1.00	0.03 0.55 0.04 0.05 2.27
MRC13004 MRC13004 MRC13008 MRC13010 TGRC027 TGRC029	51.00 77.00 38.00 118.00 12.00	78.00 41.00 119.00 13.00	1.00 3.00 1.00 1.00	0.03 0.55 0.04 0.05 2.27 0.02
MRC13004 MRC13004 MRC13008 MRC13010 TGRC027 TGRC029 TGRC030	51.00 77.00 38.00 118.00 12.00 2.00 2.00	78.00 41.00 119.00 13.00 3.00 3.00	1.00 3.00 1.00 1.00 1.00	0.03 0.55 0.04 0.05 2.27 0.02 0.31
MRC13004 MRC13004 MRC13008 MRC13010 TGRC027 TGRC029 TGRC030 TGRC034 TGRC034 TGRC048 TGRC050	51.00 77.00 38.00 118.00 12.00 2.00 2.00 11.00 7.00 43.00	78.00 41.00 119.00 13.00 3.00 3.00 13.00	1.00 3.00 1.00 1.00 1.00 1.00 2.00 1.00	0.03 0.55 0.04 0.05 2.27 0.02 0.31 0.01
MRC13004 MRC13004 MRC13008 MRC13010 TGRC027 TGRC029 TGRC030 TGRC034 TGRC048	51.00 77.00 38.00 118.00 12.00 2.00 2.00 11.00 7.00	78.00 41.00 119.00 13.00 3.00 3.00 13.00 8.00	1.00 3.00 1.00 1.00 1.00 1.00 2.00 1.00	0.03 0.55 0.04 0.05 2.27 0.02 0.31 0.01 0.04

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
No. Samples	32.00	32.00	32.00	32.00
CA_B DDH029	57.40	58.00	0.60	0.05
DDH032	10.60	11.10	0.50	0.22
DDH033	87.90	88.50	0.60	0.02
GAB042	22.00	23.00	1.00	0.02
GAB055 GAB056	23.00 13.00	24.00 14.00	1.00 1.00	0.07 0.11
MAB0031	13.90	15.70	1.80	0.02
MAB0032	21.10	22.90	1.80	0.04
MAB0033	12.10	19.30	7.20	0.03
TGRC027	3.00	4.00	1.00	0.04
Mean_Value Max Value	26.40 87.90	28.05 88.50	1.65 7.20	0.05 0.22
Min_Value	3.00	4.00	0.50	0.22
No. Samples	10.00	10.00	10.00	10.00
CA09				
DDH028	178.70	179.60	0.90	0.02
DDH030 DDH032	136.00 136.30	136.40 136.50	0.40 0.20	0.08 0.06
GAB041	136.30	18.00	1.00	0.06
GAB053	17.00	20.00	3.00	0.08
TGRC029	17.00	18.00	1.00	0.03
TGRC041	4.00	5.00	1.00	0.11
TGRC047 Mean Value	5.00	6.00	1.00	0.01
Max Value	63.87 178.70	64.94 179.60	1.06 3.00	0.06 0.11
Min_Value	4.00	5.00	0.20	0.01
No. Samples	8.00	8.00	8.00	8.00
CA08				
ARC029	50.00	51.00	1.00	0.03
DDH028 DDH030	171.00 133.70	172.00 134.50	1.00 0.80	0.02 0.11
DDH030 DDH032	130.00	130.80	0.80	1.13
GAB041	24.00	25.00	1.00	0.07
GAB054	7.00	8.00	1.00	0.03
GRC038	126.00	127.00	1.00	0.00
TGRC029 TGRC031	34.00 31.00	35.00 32.00	1.00 1.00	0.00 0.00
Mean Value	78.52	79.48	0.96	0.13
Max_Value	171.00	172.00	1.00	1.13
Min_Value	7.00	8.00	0.80	0.00
No. Samples	9.00	9.00	9.00	9.00
CA07 ARC029	36.00	37.00	1.00	0.01
DDH028	165.40	166.20	0.80	0.01
DDH030	105.80	110.60	4.80	15.54
DDH031	207.20	209.50	2.30	0.01
DDH032	115.60	115.80	0.20	17.85
DDH033 GAB042	203.00 7.00	205.90 8.00	2.90 1.00	0.07 0.01
GRC038	93.00	99.00	6.00	0.54
MAB0031	4.90	8.50	3.60	0.02
MRC13004	20.00	21.00	1.00	0.06
Mean_Value	95.79	98.15	2.36	3.47
Max_Value Min Value	207.20 4.90	209.50 8.00	6.00 0.20	17.85 0.01
No. Samples	10.00	10.00	10.00	10.00
CA06	. 3.00	. 3.00		. 3.00
ARC029	16.00	20.00	4.00	0.06
DDH030	99.10	100.10	1.00	0.03
MAB0019 MAB0030	3.10 4.90	4.90 6.70	1.80 1.80	0.00 0.07
MAB0030	4.90 21.10	22.90	1.80	0.07
MRC13004	42.00	44.00	2.00	0.24
Mean_Value	31.03	33.10	2.07	0.07
Max_Value	99.10	100.10	4.00	0.24
Min_Value	3.10	4.90 6.00	1.00	0.00
No. Samples	6.00	6.00	6.00	6.00
AD081	27.00	29.00	2.00	0.01
ARC029	6.00	13.00	7.00	0.48
DDH030	94.00	95.70	1.70	0.52

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)	
11010		()		(9/1/	
GRC038	78.00	81.00	3.00	0.06	
MAB0018	1.30	4.90		I 0.05	
MAB0019 MAB0020	8.50 1.30	12.10 3.10	3.60 1.80	0.03 0.01	
MAB0020	13.90	21.10	7.20	0.01	
MRC13004	55.00	56.00	1.00	0.60	
MRC13008	3.00	4.00	1.00	0.01	
Mean_Value	28.80	31.99	3.19	0.17	
Max_Value	94.00	95.70	7.20	0.60	
Min_Value No. Samples	1.30 10.00	3.10 10.00	1.00 10.00	0.01 10.00	
CA04	10.00	10.00	10.00	10.00	
DDH028	121.10	121.90	0.80	0.08	
DDH032	81.20	81.40	0.20	1.87	
GRC038	59.00	60.00	1.00	0.00	
MAB0018	12.10	13.90	1.80	0.02	
MAB0020 MAB0021	19.30	24.70	5.40 5.40	0.06	
MAB0021	6.70 16.50	12.10 17.50	1.00	0.09 0.00	
MRC13004	62.00	63.00	1.00	0.35	
MRC13008	23.00	24.00	1.00	0.02	
MRC13010	7.00	8.00	1.00	0.01	
Mean_Value	40.79	42.65	1.86	0.09	
Max_Value	121.10	121.90	5.40	1.87	
Min_Value	6.70	8.00	0.20	0.00	
No. Samples	10.00	10.00	10.00	10.00	
DDH028	111.50	112.40	0.90	0.35	
DDH029	211.50	213.90	2.40	0.25	
DDH032	72.00	72.50	0.50	2.58	
MAB0015	3.10	4.90	1.80	0.00	
MAB0021	15.70	17.50	1.80	0.02	
MAB0027	3.10	4.90	1.80	0.01	
MRC13004 MRC13008	68.00 34.00	69.00 38.00	1.00 4.00	2.31 4.07	
MRC13010	17.00	18.00	1.00	0.05	
Mean_Value	59.54	61.23	1.69	1.38	
Max_Value	211.50	213.90	4.00	4.07	
Min_Value	3.10	4.90	0.50	0.00	
No. Samples	9.00	9.00	9.00	9.00	
CA02 DDH028	105.00	105.70	0.70	0.08	
DDH029	207.90	208.20	0.70	0.03	
DDH032	67.60	68.40	0.80	0.54	
DDH033	116.30	117.20	0.90	2.51	
MAB0016	8.50	10.30	1.80	0.00	
MAB0017	3.10	4.90	1.80	0.00	
MAB0027	15.70	17.50	1.80	0.01	
MAB0028 MRC13004	1.30 74.00	3.10 75.00	1.80 1.00	0.00 0.26	
MRC13010	32.00	34.00	2.00	0.42	
TGRC035	48.00	49.00	1.00	8.77	
TGRC036	49.00	50.00	1.00	0.22	
Mean_Value	60.70	61.94	1.24	0.86	
Max_Value	207.90	208.20	2.00	8.77	
Min_Value	1.30 12.00	3.10	0.30	0.00	
No. Samples	12.00	12.00	12.00	12.00	
DDH028	99.20	100.20	1.00	0.04	
DDH032	60.40	60.70	0.30	0.02	
DDH033	100.70	101.80	1.10	0.14	
MAB0017	8.50	10.30	1.80	0.00	
MAB0022	17.50	19.30	1.80	0.01	
MAB0028 MRC13010	13.90 36.00	15.70 37.00	1.80 1.00	0.01 0.06	
TGRC035	41.00	43.00	2.00	2.45	
TGRC036	37.00	41.00	4.00	0.57	
TGRC050	37.00	38.00	1.00	0.03	
Mean_Value	45.12	46.70	1.58	0.48	
Max_Value	100.70	101.80	4.00	2.45	
Min_Value	8.50	10.30	0.30	0.00	
No. Samples	10.00	10.00	10.00	10.00	
CAM1					

Vein	Roof	Floor	Thick	Au	
Hole	(m)	(m)	(m)	(g/t)	
DDH029	155.10	155.40	0.30	0.03	
DDH033	93.80	94.70 8.50	0.90	2.70 0.01	
MAB0001 MAB0017	6.70 19.30	8.50 21.10	1.80 1.80	0.01	
MAB0023	4.90	6.70	1.80	0.00	
MAB0029	4.90	6.70	1.80	0.01	
MRC13004 MRC13010	99.00 49.00	100.00 51.00	1.00 2.00	0.01 0.02	
TGRC034	49.00 17.00	23.00	6.00	1.12	
TGRC035	25.00	26.00	1.00	0.04	
Mean_Value	47.47	49.31	1.84	0.51	
Max_Value Min Value	155.10 4.90	155.40 6.70	6.00 0.30	2.70	
No. Samples	10.00	10.00	10.00	0.00 10.00	
CAM2					
DDH028	73.10	73.70	0.60	0.01	
DDH029 DDH030	152.50	153.30	0.80	0.02	
MAB0002	26.90 3.10	27.90 4.90	1.00 1.80	33.36 0.09	
MAB0023	12.10	15.70	3.60	0.00	
MAB0029	17.50	19.30	1.80	0.00	
TGRC034 TGRC037	8.00 5.00	9.00 6.00	1.00 1.00	1.16 0.01	
TGRC057	9.00	10.00	1.00	0.01	
Mean_Value	34.13	35.53	1.40	2.77	
Max_Value	152.50	153.30	3.60	33.36	
Min_Value No. Samples	3.10 9.00	4.90 9.00	0.60 9.00	0.00 9.00	
CAM3	9.00	9.00	9.00	9.00	
DDH029	134.90	135.80	0.90	0.04	
DDH030	19.20	20.70	1.50	0.08	
MAB0002 MAB0003	12.10	13.90 8.50	1.80	0.01	
MAB0024	6.70 3.10	6.50 4.90	1.80 1.80	0.14 0.02	
MRC13004	120.00	121.00	1.00	0.03	
MRC13010	60.00	61.00	1.00	0.00	
TGRC034 TGRC035	4.00 9.00	5.00 11.00	1.00 2.00	0.39 0.31	
TGRC036	5.00	7.00	2.00	0.04	
Mean_Value	37.40	38.88	1.48	0.11	
Max_Value	134.90	135.80	2.00	0.39	
Min_Value No. Samples	3.10 10.00	4.90 10.00	0.90 10.00	0.00 10.00	
CAM4	10.00	10.00	10.00	10.00	
DDH032	18.90	19.60	0.70	0.44	
DDH033	41.40	44.60	3.20	0.12	
MAB0003 MAB0024	13.90 15.70	15.70 17.50	1.80 1.80	0.00 0.01	
MAB0025	1.30	3.10	1.80	0.00	
MRC13010	71.00	72.00	1.00	0.00	
Mean_Value	27.03	28.75	1.72	0.07	
Max_Value Min_Value	71.00 1.30	72.00 3.10	3.20 0.70	0.44 0.00	
No. Samples	6.00	6.00	6.00	6.00	
CAM5					
DDH032	14.20	14.90	0.70	0.26	
DDH033 MAB0005	31.40 1.30	32.10 3.10	0.70 1.80	0.15 0.00	
MAB0005 MAB0025	8.50	10.30	1.80	0.00	
MRC13010	82.00	83.00	1.00	0.01	
Mean_Value	27.48	28.68	1.20	0.05	
Max_Value Min_Value	82.00 1.30	83.00 3.10	1.80 0.70	0.26 0.00	
No. Samples	5.00	5.00	5.00	5.00	
CAM6					
DDH032	5.40	6.00	0.60	0.57	
DDH033 MAB0005	13.10 12.10	14.20 13.90	1.10 1.80	0.14 0.00	
MRC13010	89.00	90.00	1.00	0.00	
Mean_Value	29.90	31.02	1.12	0.11	
Max_Value	89.00	90.00	1.80	0.57	
Min_Value	5.40	6.00	0.60	0.00	
No. Samples	4.00	4.00	4.00	4.00	

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
	(***)	(***)	()	(37
CAM7 DDH033	4.60	5.00	0.40	2.03
MAB0005	19.30	21.10	1.80	0.01
MAB0006	4.90	6.70	1.80	0.01
MRC13010	93.00	94.00	1.00	0.00
Mean_Value	30.45	31.70	1.25	0.17
Max_Value Min_Value	93.00 4.60	94.00 5.00	1.80 0.40	2.03 0.00
No. Samples	4.00	4.00	4.00	4.00
CAM8				
MAB0007	8.50	10.30	1.80	0.00
MRC13010 Mean Value	98.00 53.25	99.00 54.65	1.00 1.40	0.01
Max_Value	98.00	99.00	1.40	0.00
Min_Value	8.50	10.30	1.00	0.00
No. Samples	2.00	2.00	2.00	2.00
CAM9	4.4.40	45.00	4.50	0.04
DDH028 DDH029	14.40 34.60	15.90 36.00	1.50 1.40	0.04 0.32
MAB0008	8.50	13.90	5.40	0.04
MRC13010	106.00	107.00	1.00	0.01
Mean_Value	40.87	43.20	2.33	0.08
Max_Value Min_Value	106.00	107.00	5.40	0.32
No. Samples	8.50 4.00	13.90 4.00	1.00 4.00	0.01 4.00
CAM10	4.00	7.00	7.00	4.00
ARC030	68.00	72.00	4.00	0.02
MAB0012	1.30	3.10	1.80	0.03
TGRC040	9.00	10.00	1.00	0.15
Mean_Value Max_Value	26.10 68.00	28.37 72.00	2.27 4.00	0.04 0.15
Min_Value	1.30	3.10	1.00	0.13
No. Samples	3.00	3.00	3.00	3.00
CAM11				
ARC030 GAB055	33.00 18.00	34.00 19.00	1.00 1.00	7.81 0.08
GAB055 GAB057	22.00	23.00	1.00	0.00
GAB058	1.00	2.00	1.00	0.02
MAB0013	22.90	24.70	1.80	0.01
MAB0014	8.50	10.30	1.80	0.02
Mean_Value Max_Value	17.57 33.00	18.83 34.00	1.27 1.80	1.05 7.81
Min_Value	1.00	2.00	1.00	0.01
No. Samples	6.00	6.00	6.00	6.00
CH3	40.00	20.00	4.00	0.47
GAB040 Mean_Value	19.00 19.00	20.00	1.00	0.17 0.17
Max_Value	19.00	20.00 20.00	1.00	0.17
Min_Value	19.00	20.00	1.00	0.17
No. Samples	1.00	1.00	1.00	1.00
CHN1	F 00	6.00	1.00	0.00
GAB040 Mean_Value	5.00 5.00	6.00	1.00	2.32
Max_Value	5.00	6.00	1.00	2.32
Min_Value	5.00	6.00	1.00	2.32
No. Samples	1.00	1.00	1.00	1.00
All veins	44.07	45.00	4.05	0.04
Mean_Value Max_Value	44.27 211.50	45.92 213.90	1.65 7.20	0.64 33.36
Min_Value	1.00	2.00	0.10	0.00
No. Samples	191.00	191.00	191.00	191.00
DONKEY HILL				
DH				
ARC037	129.00	130.00	1.00	0.03
ARC040 GAB077	131.00 10.00	132.00 12.00	1.00 2.00	0.05 0.10
GAB077 GAB078	12.00	16.00	2.00 4.00	0.10
GRC024	36.00	37.00	1.00	0.35
MRC13018	26.00	27.00	1.00	0.03
MRC13030	54.00	55.00	1.00	0.03

Vein	Roof	Roof Floor Thick		Au
Hole	(m)	(m)	(m)	(g/t)
MRC13030	138.00	139.00	1.00	0.02
Mean_Value	67.00	68.50	1.50	0.26
Max_Value	138.00	139.00	4.00	0.59
Min_Value	10.00	12.00	1.00	0.02
No. Samples	8.00	8.00	8.00	8.00
DH02				
MRC13018	116.00	117.00	1.00	0.03
MRC13023	41.00	43.00	2.00	1.43
Mean_Value	78.50	80.00	1.50	0.96
Max_Value	116.00	117.00	2.00	1.43
Min_Value	41.00	43.00	1.00	0.03
No. Samples	2.00	2.00	2.00	2.00
DH03				
GAB077	18.00	19.00	1.00	0.03
GRC028	41.00	45.00	4.00	1.10
MRC13016	22.00	23.00	1.00	2.73
MRC13018	108.00	109.00	1.00	0.04
MRC13023	79.00	80.00	1.00	1.63
MRC13030	38.00	39.00	1.00	0.04
Mean_Value	51.00	52.50	1.50	0.98
Max_Value	108.00	109.00	4.00	2.73
Min_Value	18.00	19.00	1.00 6.00	0.03
No. Samples	6.00	6.00	6.00	6.00
DH04 ARC019	47.00	48.00	1.00	7.06
ARC019 ARC021	89.00	94.00	5.00	17.32
ARC021	128.00	132.00	4.00	0.02
ARC038	56.00	59.00	3.00	0.02
ARC039	138.00	141.00	3.00	11.64
ARC040	156.00	160.00	4.00	0.02
ARC047	112.50	113.00	0.50	0.02
ARC049	106.00	108.00	2.00	0.02
GRC024	30.00	32.00	2.00	4.73
GRC026	105.00	107.00	2.00	5.67
MRC13016	80.00	82.00	2.00	1.06
MRC13018	65.00	67.00	2.00	0.47
MRC13023	154.00	164.00	10.00	1.03
MRC13030	89.00	90.00	1.00	0.74
Mean_Value	96.82	99.79	2.96	3.95
Max_Value	156.00	164.00	10.00	17.32
Min_Value	30.00	32.00	0.50	0.02
No. Samples	14.00	14.00	14.00	14.00

Vein Hole	Roof (m)	Floor (m)	Thick (m)	Au (g/t)
DH05				
ARC019	30.00	36.00	6.00	1.59
ARC021	81.00	82.00	1.00	0.11
ARC036	116.00	120.00	4.00	0.01
ARC038	40.00	41.00	1.00	0.23
ARC039	131.00	134.00	3.00	3.73
ARC040	139.00	140.00	1.00	0.07
ARC047	104.00	106.00	2.00	0.06
ARC049	86.00	87.00	1.00	1.31
GRC024	25.00	27.00	2.00	2.06
GRC026	96.00	97.00	1.00	0.37
MRC13018	60.00	61.00	1.00	2.80
MRC13030	100.00	102.00	2.00	0.05
Mean_Value	84.00	86.08	2.08	1.20
Max_Value	139.00	140.00	6.00	3.73
Min_Value	25.00	27.00	1.00	0.01
No. Samples	12.00	12.00	12.00	12.00
DH06				
ARC019	12.00	16.00	4.00	0.02
ARC036	96.00	100.00	4.00	0.07
ARC040	109.00	115.00	6.00	0.01
ARC049	71.00	72.00	1.00	0.62
MRC13018	42.00	43.00	1.00	0.01
MRC13030	116.00	118.00	2.00	0.16
Mean_Value	74.33	77.33	3.00	0.08
Max_Value	116.00	118.00	6.00	0.62
Min_Value	12.00	16.00	1.00	0.01
No. Samples	6.00	6.00	6.00	6.00
DH07				
ARC036	32.00	36.00	4.00	0.03
ARC040	49.00	50.00	1.00	0.04
MRC13030	125.00	126.00	1.00	0.03
Mean_Value	68.67	70.67	2.00	0.03
Max_Value	125.00	126.00	4.00	0.04
Min_Value	32.00	36.00	1.00	0.03
No. Samples	3.00	3.00	3.00	3.00
All veins				
Mean_Value	78.72	80.96	2.25	1.84
Max_Value	156.00	164.00	10.00	17.32
Min_Value	10.00	12.00	0.50	0.01
No. Samples	51.00	51.00	51.00	51.00
ivo. Samples	51.00	51.00	51.00	51.00

APPENDIX 4 - VEIN MODEL STATISTICS - BY DEPOSIT

The following listings give statistics (thickness, area and volume for the raw vein models within the three deposit areas. Veins are listed from west to east. A number of minimum thicknesses are negative. These are of the raw grids, before correction for cross-overs of roofs and floors.

Area:		Thickness		Area	Volume
	Max	Min	Av		
Vein	(m)	(m)	(m)	(m²)	(m³)
Currajong WEST					
CUW7	4.18	0.19	1.52	33,256	50,609
CU_C	8.02	-0.78	2.10	37,325	78,182
CU_M	24.00	0.44	8.49	36,881	313,909
CU_A	6.69	-1.06	2.72	48,750	133,075
CU_F	9.63	0.23	3.17	52,719	167,789
CU_5	5.20	-0.11	2.21	52,581	116,249
CU_6	3.75	0.50	1.97	48,606	95,188
Average	8.78	-0.08	3.17	44,303	136,429
Currajong - EAST	Γ (new area):				
CUE8	2.41	0.57	1.61	39,038	62,958
CUE7	3.48	-0.29	1.21	26,113	31,801
CUE6	1.54	0.34	0.90	25,263	22,984
CUE5	2.76	0.44	1.77	26,294	46,707
CUE4	1.77	0.00	1.01	21,881	22,147
CUE3	2.79	0.11	0.85	43,419	37,021
CUE2	4.02	0.21	1.16	37,119	42,804
CUE1	1.14	0.22	0.71	34,844	24,838
CUEM1	1.62	0.18	0.83	21,356	17,650
CUEM2	1.23	0.44	0.86	26,806	22,969
CUEM3	2.47	0.04	1.22	28,606	34,785
Average	2.29	0.21	1.10	30,067	33,333
Caledonian:					
CA09	2.21	0.01	0.79	34,606	27,516
CA08	0.81	0.48	0.63	48,881	30,703
CA07	3.44	-0.61	0.86	99,494	85,592
CA06	3.08	-0.70	1.22	28,144	34,469
CA05	5.65	0.06	1.89	47,381	89,396
CA04	3.82	-0.36	0.77	32,056	24,724
CA03	2.13	0.23	0.68	52,469	35,468
CA02	1.41	-0.03	0.57	58,694	33,378
CA01	1.95	0.24	0.74	35,013	25,891
CAM1	4.26	-0.09	0.94	48,175	45,190
CAM2	2.15	0.11	0.66	41,169	26,961
CAM3	1.96	0.25	0.78	37,794	29,300
CAM4	1.90	0.02	0.79	23,419	18,549
CAM5	1.16	0.04	0.59	22,494	13,144
CAM9	2.84	-0.73	1.27	28,044	35,541
CAM11	1.01	0.65	0.79	18,569	14,755
Average	2.49	-0.03	0.87	41,025	35,661
Donkey Hill:	0.05	0.04	0.07	00.000	FF FC 1
DH06	3.35	0.31	2.07	26,863	55,591
DH05	3.18	0.16	1.12	31,619	35,346
DH04	5.27	0.18	1.37	34,331	46,871
DH03	1.73	0.70	0.64	20,150	13,048
Average	3.38	0.34	1.30	28,241	37,714