Maiden drill program confirms significant gold, nickel, and rare earth potential at Dingo Rocks

HIGHLIGHTS

- Results from Mineral 260's maiden air-core drill program at the Dingo Rocks Project in WA have confirmed that ultramafic units have been intersected at three 'bullseye' magnetic targets (**Figure 1**), with broad zones of elevated nickel recorded at two of the targets including values up to **6,030ppm Ni** (see **Appendix 1** for a full list of results).
- Mafic units were intersected in several holes across coincident magnetic/gravity targets, further supporting the hypothesis that the project contains rock types prospective for Nickel-Copper-Platinum Group Elements (Ni-Cu-PGE) mineralisation (**Figures 2** & **3**).
- Anomalous zones of gold were intersected in holes DRAC0069 and DRAC0082, which returned results of 12m @ 73ppb Au from 16m, including 4m @ 128ppb Au from 20m (DRAC0069), and 8m @ 58ppb Au from 36m (DRAC0082).
- High-grade saprolite-hosted rare earth mineralisation was intersected in multiple holes across all targets, with peak results of up to 4,506ppm Total Rare Earth Oxides (TREO) and 1,423ppm Neodymium and Praseodymium (Nd and Pr), 30 holes (~21% of the total holes drilled) returning results >1,000ppm TREO and 77 holes (~53% of the total holes drilled) returning results >500ppm TREO (Figures 3 & 4).
- Better TREO intersections include:
 - o 3m @ 3,171ppm TREO from 49m (DRAC0042)
 - o 2m @ 3,158ppm TREO from 24m (DRAC0051)
 - o 4m @ 2,041ppm TREO from 24m (DRAC0080)
 - o 2m @ 2,077ppm TREO from 64m (DRAC0100)
 - o 4m @ 2,290ppm TREO from 24m (DRAC0134)
- The results are considered highly significant given the reconnaissance nature and wide spacing of the drilling.

Minerals 260 Limited ("Minerals 260" or the "Company") is pleased to report highly encouraging results from the recently completed maiden Air Core (AC) drilling program at its 100%-owned Dingo Rocks Project ("Project"), located in the Albany Fraser Range Region of Western Australia.

The AC drilling program, which comprised 144 AC holes for 5,030m, targeted previously untested coincident magnetic/gravity anomalies interpreted to indicate possible mafic-ultramafic intrusions prospective for Ni-Cu-PGE mineralisation. The drilling program also assessed the potential for clay-hosted Rare Earth Element (REE) mineralisation, similar to that discovered on adjacent tenements held by other parties.

TREO (Total Rare Earth Oxide) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3

FUTURE WORK

Planning is already underway for the next phase of exploration at Dingo Rocks. Proposed work includes:

- AC drilling in the south-west of the tenement targeting further gold and base metals mineralisation.
- Ground Electromagnetic (EM) surveys across mafic/ultramafic units defined by the AC drilling and interpreted to be prospective for sulphide related Ni-Cu-PGE mineralisation.
- Interpretation of petrographic analysis of drill chips to assist with understanding the bedrock geology.

This work is expected to commence in early 2024.

MANAGEMENT COMMENTS

Commenting on the results of drilling at Dingo Rocks, Minerals 260 Managing Director Luke McFadyen said:

"The results announced today are very positive, particularly for early-stage air-core drilling, and support further investment in the next phase of exploration. The potential for a multi-commodity exploration opportunity, including nickel, gold and rare earths, is really attractive for Minerals 260 and aligns with our strategy to explore for critical minerals".

This announcement has been authorised for release by the Board.

PROJECT SUMMARY

The Dingo Rocks Project is in the Albany Fraser Range Province, approximately 600km south-east of Perth and 100km south of Norseman, proximal to the southern margin of the Eastern Goldfields Superterrane of the Archaean Yilgarn Block.

The Dingo Rocks Project borders Meeka Metals' (ASX: MEK) Circle Valley Gold-REE Project, where drilling in 2022 intersected multiple zones of gold mineralisation coincident with magnetic features and as well as defining a saprolite-hosted REE resource of 98Mt @ 890ppm TREO (refer ASX: MEK – 14 June 2023) (**Figure 4)**.

Competent Person Statement

The Information in this report that relates to new Exploration Results is based on and fairly represents information and supporting documentation prepared by Mr Matthew Blake, who is a Competent Person and a member of the Australasian Institute of Geoscientists (AIG). Mr Blake is a full-time employee of the company. Mr Blake has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Blake consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that all material assumptions and technical parameters underpinning the estimates or production targets or forecast financial information derived from a production target (as applicable) in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Forward Looking Statement

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

For further information please contact:

Luke McFadyen Managing Director T: +61 8 6556 6020 info@minerals260.com.au

Investor Relations:

Nicholas Read Read Corporate T: +61 8 9388 1474 nicholas@readcorporate.com.au

Figure 1 - 'Bullseye' magnetic anomalies with anomalous nickel

Figure 2 - Northern Dingo Rocks AC collars with maximum TREO ppm results and significant intercepts

Figure 3 - Southern Dingo Rocks AC collars with maximum TREO ppm results and significant intercepts

Figure 4: Dingo Rocks Project – Location plan showing significant tenement positions and resources.

									Significant Intercepts				
	East	North	RL	Depth (m)	Dip	<u>م_:</u>	From	То	TR	EO (>1,00	0ppm)	Au (>50ppb), I	Ni (>1,000ppm)
HOLE ID						A21	(m)	(m)	Interval	TREO	Nd+Pr REO	Au	Ni
									(m)	(ppm)	(ppm)	(ppb)	(ppm)
DRAC0001	410009	6357379	240	37	-90	0						(NICA)	•
DRAC0002	410586	6357346	235	10	-90	0	1			NOT Signi	ficant Assays	(NSA)	
DRAC0003	411128	6357227	233	27	-90	0	16	20	4	1210	242	-	-
DRAC0004	411706	6356973	238	37	-90	0							
DRAC0005	412054	6356579	238	40	-90	0	1						
DRAC0006	412684	6356398	240	6	-90	0	1						
DRAC0007	412899	6355888	238	6	-90	0	1						
DRAC0008	413253	6355571	238	21	-90	0	1						
DRAC0009	413337	6355086	234	26	-90	0					NSA		
DRAC0010	413475	6354756	238	27	-90	0							
DRAC0011	413759	6354321	237	12	-90	0	1						
DRAC0012	413311	6354572	238	6	-90	0	1						
DRAC0013	413121	6354379	239	8	-90	0	1						
DRAC0014	414490	6357894	239	53	-90	0	26	28	2	1375	118	-	-
DRAC0015	414416	6357830	237	57	-90	0					NSA		
DRAC0016	414331	6357754	236	54	-90	0	28	32	4	1957	344	-	-
DRAC0017	414266	6357676	235	42	-90	0	24	28	4	1087	253	-	-
DRAC0018	414557	6357949	240	43	-90	0		20		1007	200		
DRAC0019	414628	6358018	240	34	-90	0	1				NSA		
DRAC0020	414701	6358102	239	26	-90	0	16	24	8	1036	246	-	-
DRAC0021	414769	6358168	239	20	-90	0	10		0	1000	210		
DRAC0021	414839	6358244	235	30	-90	0	1						
DRAC0022	11/010	6358308	235	25	-90	0							
DRAC0023	11/070	6358385	230	16	-90	0	1				NSA		
DRAC0025	/15033	6358446	230	20	-90	0	1						
DRAC0025	415055	6359//7	230	20	-90	0	1						
DRAC0020	410140	0333447	241	21	-90	0	16	60	E 2		1	1	2156
	/17853	6359618	2/1	69	-90	0	inc. 7m	@ 4 23	Onnm Ni	from 30m	ļ	ļ	2150
DIACOUZI	41/000	0333010	241	05	-50	50 0	inc. 1m	@ 6.03	Oppm Ni	from 33m))		
							16	24		-	_	I _	1705
DRAC0028	418576	6360073	247	67	-90	0	52	67	15			_	1/05
	/12020	6257800	241	22	-00	0	12	16	15	1062	244	_	1025
DRAC0029	413920	6257010	241	10	-90	0	12	17	4 E	1720	244	-	-
DRAC0030	413040	6257750	242	19	-90	0	12	17	5	1720	265	-	-
DRACOUST	413/00	6350751	242	10 27	-30	0	1						
	413317 /12/30	6350675	241	27	-30	0	1						
	412575	6350910	240	22 22	-90	0	1						
	/13657	6350883	241	 _/Q	_00		ł						
	413032	6250056	241	40 24	-30	0	ł				NSA		
	413/13	6360030	239	24	-90	0	1				ACI		
	413/03	6360100	237	23	_00	0	1						
	412020	6260170	230	20	-90		1						
DRAC0039	415959	6360170	230	39	-90	0	1						
	414003	6260215	230	2/	-90		1						
DRAC0041	414078	0300315	238	30	-90	0	40	52	2	2171	F01	r	
DRAC0042	423734	6353449	243	52	-90	0	49	<u>عر</u>	3 2000 TD	51/1		 () from 49m	-
DRACOOAS	422222	6252220	242	21	00		inc. 2m	w 4,0t		LO (764P	pini iNu+Pr RE	0) 110111 49M	
DRAC0043	423/33	6353338	243	31	-90		4				NSA		
DRAC0044	423/34	6252144	243	33	-90	0	42	4.4	1	1224	407	1	
DRAC0045	423/32	6353141	243	44	-90	0	43	44	1	1234	407	-	-
DRAC0046	423/30	6353039	242	48	-90		-						
DRAC0047	422933	6354237	243	24	-90	0	4				NCA		
DRAC0048	422934	6354328	241	21	-90		4				INSA		
DRAC0049	422930	6354435	239	48	-90	0	4						
DRAC0050	422936	6354524	238	64	-90	υ							

Appendix 1 – Dingo Rocks Project–Current AC Drill Hole Statistics

Level 2, 1292 Hay Street, West Perth WA 6005
PO Box 638, West Perth WA 6872

									Significant Intercepts				
	Fact	North	ы	Depth	Dim	A:	From	То	TRE	O (>1,00	0ppm)	Au (>50ppb), N	li (>1,000ppm)
Hole ID	East	North	RL	(m)	Dip	AZI	(m)	(m)	Interval	TREO	Nd+Pr REO	Au	Ni
									(m)	(ppm)	(ppm)	(ppb)	(ppm)
DDAC0054	422026	COF 4657	240	27		0	24	26	2	3158	543	-	-
DRAC0051	422936	6354657	240	27	-90	0	inc. 1m	@ 4,35	9ppm TRE	0 (1,423	ppm Nd+Pr R	EO) from 24m	
DRAC0052	422931	6354142	244	50	-90	0	36	48	12	1063	269	-	-
DRAC0053	422934	6354042	244	32	-90	0	29	30	1	1306	264	-	-
DRAC0054	422934	6353838	245	9	-90	0			ļ				
DRAC0055	422932	6353947	245	9	-90	0							
DRAC0056	422931	6353741	245	8	-90	0					NSA		
DRAC0057	422933	6353630	244	7	-90	0							
DRAC0058	422930	6353535	244	14	-90	0							
DRAC0059	422933	6353453	243	27	-90	0	25	26	1	1579	289	-	-
DRAC0060	422931	6353346	243	36	-90	0			ļ				
DRAC0061	422928	6353241	242	53	-90	0					NSA		
DRAC0062	422925	6353134	241	45	-90	0	40	44	4	1291	104	-	-
DRAC0063	422932	6353043	239	33	-90	0							
DRAC0064	421327	6353994	246	25	-90	0					NSA		
DRAC0065	421329	6354097	246	40	-90	0	28	32	4	2300	728	-	-
DRAC0066	421327	6354197	246	57	-90	0	28	32	4	1341	345	-	-
DRAC0067	421329	6354307	246	57	-90	0							
DRAC0068	421332	6354401	245	44	-90	0					NSA		
						_	16	28	12	-	-	73	-
DRAC0069	421334	6354499	243	67	-90	0	inc.	4m @	128ppb Au	u from 20)m	_	
DRAC0070	421333	6354606	243	35	-90	0					NSA		
DRAC0071	421337	6353903	247	26	-90	0	20	24	4	1061	292	-	_
DRAC0072	421338	6353811	247	48	-90	0			· · · ·		NSA		
DRAC0073	421336	6353693	247	33	-90	0	12	16	4	1310	210	-	_
DRAC0074	421339	6353611	246	54	-90	0	53	54	1	1000	161	-	_
DRAC0075	421333	6353502	246	36	-90	0	28	32	4	1055	258	-	-
DRAC0076	421332	6353404	245	19	-90	0	17	18	1	1423	449	-	-
DRAC0077	421337	6353297	243	19	-90	0			-	2.20			
DRAC0078	421335	6353218	242	12	-90	0					NSA		
DRAC0079	421315	6353119	240	3	-90	0							
DRAC0080	421499	6357262	250	39	-90	0	24	28	4	2041	415	-	-
DRAC0081	421006	6357273	253	54	-90	0		20	•	2012	NSA		
DRAC0082	420507	6357283	247	71	-90	0	36	44	8			58	
DRAC0083	418507	6357330	245	39	-90	0			Ű		NSA	50	
DRAC0084	413484	6345770	233	51	-90	0	40	44	4	1027	313	-	_
DRAC0085	413486	6345665	233	56	-90	0							
DRAC0086	413486	6345567	234	65	-90	0							
DRAC0087	413483	6345475	234	50	-90	0							
DRAC0088	413485	6345367	234	75	-90	0							
DRAC0089	413487	6345268	234	47	-90	0							
DRAC0090	413492	6345165	235	44	-90	0							
DRAC0091	413496	6345063	235	45	-90	0					NSA		
DRAC0092	413499	6344971	235		-90	0							
DRAC0092	413493	6344860	230	19	-90	0							
DRAC0094	413502	6344765	237	15	-90	0							
	413502	6344663	230	15	-90	n							
DRAC0096	413506	6344470	240	17	-90	0							
DRAC0097	413500	6344366	239	33	-90	n	74	28	4	1074	144	-	-
DRAC0098	413497	6344268	230	50	-90	0	27	20	-7	10/4	_ ++	-	-
DRAC0099	413511	6344154	239	47	-90	0					NSA		
DRAC0100	413512	6344057	240	64	-90	0	60	62	2	2077	724	-	-

									Significant Intercepts				
	Fact	North	ы	Depth	Dim	A:	From	То	TR	EO (>1,00	0ppm)	Au (>50ppb), M	Ni (>1,000ppm)
	EdSL	Norui		(m)	Dip	A21	(m)	(m)	Interval	TREO	Nd+Pr REO	Au	Ni
									(m)	(ppm)	(ppm)	(ppb)	(ppm)
DRAC0101	413515	6343967	241	58	-90	0							
DRAC0102	413519	6343862	242	23	-90	0							
DRAC0103	413523	6343771	243	61	-90	0					NSA		
DRAC0104	413523	6343659	243	68	-90	0							
DRAC0105	413502	6344567	240	13	-90	0							
DRAC0106	413478	6345871	233	48	-90	0	36	45	9	1090	315	-	-
DRAC0107	413481	6345977	233	42	-90	0							
DRAC0108	413472	6346067	233	33	-90	0							
DRAC0109	413473	6346166	233	24	-90	0							
DRAC0110	413471	6346271	234	10	-90	0							
DRAC0111	413482	6346364	234	19	-90	0							
DRAC0112	413483	6346462	234	30	-90	0							
DRAC0113	413469	6346568	234	37	-90	0							
DRAC0114	413462	6346654	235	19	-90	0					ΝSΔ		
DRAC0115	414464	6345615	242	73	-90	0					113/1		
DRAC0116	414472	6345518	243	55	-90	0							
DRAC0117	414468	6345417	243	60	-90	0							
DRAC0118	414473	6345323	242	36	-90	0							
DRAC0119	414472	6345221	242	12	-90	0							
DRAC0120	414477	6345106	242	14	-90	0							
DRAC0121	414483	6345013	241	52	-90	0							
DRAC0122	414480	6344911	241	17	-90	0							
DRAC0123	414482	6344821	241	36	-90	0	32	34	2	1500	307	-	-
		0011011			50	Ľ	inc. 1m	@ 1,98	37ppm TR	EO (431p	pm Nd+Pr RE	O) from 24m	1
DRAC0124	414462	6345711	242	62	-90	0	40	44	4	1181	162	-	-
DRAC0125	414465	6345821	241	60	-90	0	1						
DRAC0126	414461	6345923	240	52	-90	0	1						
DRAC0127	414459	6346021	240	31	-90	0	1						
DRAC0128	414459	6346123	238	42	-90	0	1						
DRAC0129	414457	6346224	237	22	-90	0	-				NSA		
DRAC0130	414451	6346315	235	46	-90	0							
DRAC0131	414448	6346417	232	44	-90	0							
DRAC0132	414451	6346517	230	36	-90	0]						
DRAC0133	414450	6346619	230	34	-90	0			1		•		
DRAC0134	414493	6346715	231	38	-90	0	24	28	4	2290	332	-	-
DRAC0135	414437	6346818	233	33	-90	0	1						
DRAC0136	414445	6346915	235	19	-90	0	-						
DRAC0137	414448	6347024	235	10	-90	0	1						
DRAC0138	418064	6359646	240	15	-90	0	1				NSA		
DRAC0139	418162	6359666	241	23	-90	0	1						
DRAC0140	418277	6359688	242	33	-90	0	1						
DRAC0141	418379	6359699	244	36	-90	0	ļ			1			
DRAC0142	418479	6359714	246	46	-90	0	16	20	4	1000	256	-	-
DRAC0143	418577	6359731	248	38	-90	0	1				NSA		
DRAC0144	418662	6359770	248	35	-90	0							

Appendix 2 – Dingo Rocks Project– JORC Code 2012 Table 1 Criteria

The table below summarises the assessment and reporting criteria used for the Dingo Rocks Project and reflects the guidelines in Table 1 of *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code, 2012).

Criteria	JORC Code explanation	Commentary				
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Sub-surface samples have been collected by air-core (AC) drilling technique (see below). Drillholes are oriented vertically, perpendicular to the interpreted contact of bedrock.				
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Regular cleaning of cyclone to remove hung-up clays and avoid cross-sample contamination.				
	Aspects of the determination of mineralisation that are Material to the Public Report.	Samples typically dry. AC samples were collected by the metre from the drill rig				
	In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised	4m composite samples collected via spear sampling of 1m samples.				
	to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold	1m samples retained for future assaying if warranted. Entire sample pulverised. Aqua regia following 4 acid digest.				
	that has inherent sampling problems. Unusual commodities or mineralisation types (eg					
	detailed information.	Samples assayed at Bureau Veritas – Au, Pt, Pd (FA003), Other elements MA101, 102				
		Cr, Fe, Mg, Mn, P, S, Ti and V by ICP-AES. Ag, As, Bi, Ce, Co, Cu, Dy, Er, Eu, Gd, Ho, La, Li, Lu, Nd, Ni, Pb, Pr, Sc, Sm, Tb, Te, Tm, W, Y, Yb and Zn by ICP-MS.				
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	Standard 3.5" aircore drill bit. Drilling by Bostech utilising a truck mounted KL150 drill rig.				
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recoveries are visually estimated and recorded for each metre.				
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Dry drilling and regular cleaning of sampling material.				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	None noted.				
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	All AC drillholes are logged on 1 m intervals and the following observations recorded:				
	metallurgical studies.	Recovery, quality (i.e. degree of contamination), wet/dry, hardness, colour, grainsize, texture, mineralogy, lithology, structure type and intensity, vein type and %, and alteration assemblage.				

Section 1 Sampling Techniques and Data

Whether loging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. Logging is quantitative, based on visual field estimates Sub-sampling techniques and sample preparation The total length and percentage of the relevant intersections logged. All holes are logged from start to finish. Sub-sampling techniques and sample preparation The core, whether rule as any led wet or dry. No core samples are collected as 1 metre samples and then composited by bub/spear asimpling. Samples are typically dry. For all sample types, the nature, quality and perportiones of the sample preparation technique. Non-core samples are collected as 1 metre samples and then composited by bub/spear sampling. Samples are typically dry. Quality control procedures adopted for all sub aming stages to maximize representing is representative of the in stirt material collected. duplicate/second-half samples. Non-core samples - For all samples include: - Countrol procedures adopted for all sub aming stages to maximize representing is representative of the in stirt material collected. duplicate/second-half sampling is representative of the in stirt material collected. duplicate/second-half sampling. Measures taken for drill samples include: - require classing of closen up the assays. - The drill samples include: - require classing and parcopristeness of the assaying and aboratory proceause sade and duplicate/second-half samples. Assay and liboartary procedures have been essays - statistical comparison of duplicate, standards. Quality of assay data and laboratory tests The nature, quality and approprinteness of the assaying and aboratory proceause sade	Criteria	JORC Code explanation	Commentary			
The total length and percentage of the relevant interactions logged. All holes are logged from start to finish. Sub-sampling techniques and sample greaters and the three relevant interactions logged. No core drilling completed. If core, whether ridue (the sample greaters) whether samples and the sample greaters and the sample great		Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is quantitative, based on visual field estimates			
Sub-sampling techniques and sample preparation If non-core, whether ruffled, lube sampled, rolary split, etc and whether sampled wet or dry. Non-core samples are collected as 1 metre samples and then composited by tube/spear sampling. Samples are typically dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e. Quality control procedures adopted for all sub- samplies stages to maximise regresentivity of asamples. Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e. Quality control procedures adopted for all sub- samplies taken to ensure that the sampling is duplicate/scond-half sampling. Review of lab standards Measures taken to ensure that the sampling is duplicate/scond-half sampling. Review of lab standards Whether sample sizes are appropriate to the grain size of the material obleng sampled. • regular cleaning of cyclones and sampling equipment to prevent contamination; duplicate/scond-half sampling. Quality of assay diaboratory tests The nature, quality and appropriateness of the assaying al laboratory procedures save been selected follow. Samples are submitted for multi-element analyses by Bureau Vertiles aqua-regia techniques provided by internationally certified laboratories. Verification of grain size of the material being sampled laboratory tests None used Note weed laboratory tests		The total length and percentage of the relevant intersections logged.	All holes are logged from start to finish.			
preparation If non-core, whether riffled, tube sampled wetor of y, internationally, test and whether sampled wetor dy. Non-core samples are collected as There samples are dynamical internationally recognised by tube/spear sampling. Samples are typically dy. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; Quality control procedures adopted for all use. Over on dyning, jaw crushing and pulverising so that 85% passes -75microns. Quality control procedures adopted for all use. Over on dyning, jaw crushing and pulverising so that 85% passes -75microns. Quality control procedures adopted for all use. Over on dyning, jaw crushing and pulverising so that 85% passes -75microns. Quality control procedures adopted for all use. Over on dyning, jaw crushing and pulverising so that 85% passes -75microns. Quality of instance results for field dyning in the instan material collected including for instance results for field adopticate/becond-hall sampled. Neasures taken to ensure that the sampling is tabilited comparison of auplicate, standards and bianks inserted approximately every 10 samples and inductors procedures used in their grain size of the material being sampled. Quality of assay The nature, quality and appropriateness of the assay and iaboratory procedures used in their grain size of the material being sampled. The assay techniques provided by internationaly conosted procedures used and tonais (second-hall samp	Sub-sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilling completed.			
For all sample types, the nature, quality and appropriateness of the sample preparation technique. Sample preparation follows industry beognised laboratories; i.e. Quality control procedures adopted for all sub- sampling stages to maximise representity of samples. Oven drying, jaw crushing and pulverising so that 85% passes -75microns. Quality control procedures adopted for all sub- samples. Devicates, standards and blanks inserted approximately every 10 samples. Measures taken to ensure that the sampling is representative of the in site metarial collected, including for instance results for field duplicate/decond-half sampling. Measures taken for drill samples include: • regular cleaning of cyclones and sampling equipment to prevent contamination; • statistical comparison of anomalous composite assays wresus average of follow up the assays. Quality of assay data and laboratory tests The nature, quality and appropriateness of the grain size of the material being sampled. Assay and laboratory procedures save and whether the technique is considered partial of total. Sample are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Verification of sampling and material being sampled. None used Verification of sampling and biboratory procedures adopted (eg standards, banks, duplicates, eternal laboratory checks) and whether acceptable precision have been established None used Verification of sampling and laborator, etc. Nature of quality control procedures adopted (eg standards, banks, duplicates, eternal laborator, checks) and	sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Non-core samples are collected as 1 metre samples and then composited by tube/spear sampling. Samples are typically dry.			
Oven drying, jaw crushing and puberising so that 85% passes -75microns. Quality control procedures adopted for all sub- samples. Duplicates, standards and blanks inserted approximately even 10 samples. Burgines. Review of lab standards Measures taken to ensure that the sampling in persentative of the in situ material collected, including for instance results for field of duplicate, standards and sampling equipment to prevent contamination; Measures taken to ensure that the sampling. Measures taken to densure that the sampling equipment to prevent contamination; Multicate/second-half sampling. Measures taken to prevent contamination; Whether sample sizes are appropriate to the grain size of the material being sampled. The duffi sample size (23kg) submitted to laboratory is consistent with industry standards. Quality of assay to take and laboratory procedures used in dechniques provided by internationally identification of total. Assay and laboratory procedures have been selected digest. Quality of assay to take the the technique is considered partial or total. Samples are submitted for multi-element analyses by Bureau Ventas aqua-regia techniques following mixed-acid digest. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration falcos and phile acceptable to take of accuracy and precision. Verification of significant intersections by ensure usued in the decention of the analysis includies, stand		For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation follows industry best practice standards and is conducted by internationally recognised laboratories; i.e.			
Quality control procedures adopted for all sub- samples. puspic representative of samples. puspic representative of samples. Puspic representative of samples. Review of las standards Measures taken to ensure that the sampling including for instance results for field duplicate/second-half sampling. Measures taken for drill samples include: representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Measures taken for drill samples include: regular cleaning of cyclones and sampling equipment to prevent contamination: statistical comparison of duplicate, standards and blanks Quality of assay data and laboratory tests The nature, quality and appropriate not whether the technique is considered partial or total. Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratores. Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and total. Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratores. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Samples are submitted for accuracy and precision. Nature of quality control procedures adopted levels of accuracy (le lack of bias) and precision have been established None used Verification of sampling and assaying and assaying astand retwininde holes. None drilled </th <th></th> <th></th> <th>Oven drying, jaw crushing and pulverising so that 85%</th>			Oven drying, jaw crushing and pulverising so that 85%			
Construct Review of lab standards Measures taken to ensure that the sampling is representative of the inst un material collected, including for instance results for field duplicate/second-half sampling. Measures taken for drill samples include: • regular cleaning of cyclones and sampling equipment to prevent contamination; • statistical comparison of duplicate, standards and blanks Quality of assay data and laboratory tests Whether sample sizes are appropriate to the grain size of the material being sampled. Measures taken for drill samples include: • traditional standards. Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial of total. Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories. For geophysical tools, spectrometers, handheid XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. None used Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Regular insertion of blanks, standards and duplicates every 10 samples. Lab standards checked for accuracy and precision. Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. None drilled Documentation of primary data		Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples	passes -/ smicrons. Duplicates, standards and blanks inserted approximately every 10 samples.			
Measures taken to ensure that the sampling is presentative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Measures taken for drill samples include: understand the ensure that the sampling is clubic including for instance results for field duplicate/second-half sampling. meguiar cleaning of cyclones and sampling equipment to prevent contamination: statistical comparison of duplicate, standards and blanks statistical comparison of anomalous composite assays versus average of follow up 1m assays. Quality of assay data and and and and and and and and and whether the technique is considered partial or total. The nature, quelity and appropriateness of the assaying and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Verification of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory proceedures) and mereics and their derevation, etc. Regular insertion of blanks, standards and duplicates every 10 samples. Verification of guality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and mereic, leack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 sampling and assaying and laberators procedures adopted (eg standards, blanks, duplicates, extern			Review of lab standards			
Whether sample sizes are appropriate to the grain size of the material being sampled. The drill sample size (2-3Kg) submitted to laboratory is consistent with industry standards. Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and saying and laboratory procedures used and isonatory procedures provided by internationally certified laboratories. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid following mixed-acid digest. For geophysical tools, spectrometers, handheid XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibration, etc. None used Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory (ie lack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 samples. Verification of sampling and assaying The verification of alternative company personnel. None drilled Documentation of primary data, data entry procedures, external laboratory checks, data verification, data storage (physical and electronic) protocols. Regular insertion of blanks, standards and duplicates every 10 samples.		Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Measures taken for drill samples include: regular cleaning of cyclones and sampling equipment to prevent contamination; statistical comparison of duplicate, standards and blanks 			
Whether sample sizes are appropriate to the grain size of the material being sampled. The drill sample size (2-3kg) submitted to laboratory is consistent with industry standards. Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. The assay techniques used are total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. None used Nature of quality control procedures adopted (eg standards, blanks, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (le lack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 samples. Lab standards checked for accuracy and precision. The use of twinned holes. None drilled Verification of sampling and assaying and assaying and electronic) protocols. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinel			statistical comparison of anomalous composite assays versus average of follow up 1m assays.			
Quality of assay data and laboratory tests The nature, quality and appropriateness of the assaying and laboratory procedures used and hother the technique is considered partial or total. Assay and laboratory procedures have been selected following a review of techniques provided by internationally critified laboratories. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. For geophysical tools, spectrometers, handheid XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. None used Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 samples. Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Intersections peer reviewed in house. The use of twinned holes. None drilled All field data is manually collected, entered into exceel spreadsheets, validated and loaded into an Access database. (physical and electronic) protocols. All field data is routinely backed up.		Whether sample sizes are appropriate to the grain size of the material being sampled.	The drill sample size (2-3kg) submitted to laboratory is consistent with industry standards.			
Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest. The assay techniques used are total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Heteronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.	Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total	Assay and laboratory procedures have been selected following a review of techniques provided by internationally certified laboratories.			
Verification of sampling and assaying The verification of significant intersections by ersonnel. The use of twinned holes. None used Verification of scampling and assaying The verification of primary data, data entry procedures. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Image: All electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.			Samples are submitted for multi-element analyses by Bureau Veritas aqua-regia techniques following mixed-acid digest.			
For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. None used Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 samples. Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Intersections peer reviewed in house. The use of twinned holes. None drilled All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.			The assay techniques used are total.			
Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established Regular insertion of blanks, standards and duplicates every 10 samples. Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Lab standards checked for accuracy and precision. The use of twinned holes. None drilled Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.		For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None used			
Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Intersections peer reviewed in house. The use of twinned holes. None drilled Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.		Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and	Regular insertion of blanks, standards and duplicates every 10 samples.			
Verification of sampling and assaying The verification of significant intersections by either independent or alternative company personnel. Intersections peer reviewed in house. The use of twinned holes. None drilled Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.		precision have been established	Lab standards checked for accuracy and precision.			
The use of twinned holes.None drilledDocumentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database.Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages.All electronic data is routinely backed up.	Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Intersections peer reviewed in house.			
Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database. Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages.		The use of twinned holes.	None drilled			
Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages. All electronic data is routinely backed up.		Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	All field data is manually collected, entered into excel spreadsheets, validated and loaded into an Access database.			
All electronic data is routinely backed up.			Electronic data is stored on the Perth server. Data is exported from Access for processing by a number of different software packages.			
			All electronic data is routinely backed up.			

Criteria	JORC Code explanation	Comme	ntary	
		No hard copy data	a is retained.	
	Discuss any adjustment to assay data.	Rare Earth Ele stoichiometric Ra stoichiometric con	ment (REE) results re Earth Oxides (REC iversion factors:	are converted to D) using element-to-
		Element ppm	Conversion Factor	Oxide Form
		Ce	1.1713	CeO ₂
		Dy	1.1477	Dy ₂ O ₃
		Er	1.1435	Er ₂ O ₃
		Eu	1.1579	Eu ₂ O ₃
		Gd	1.1526	Gd ₂ O ₃
		Но	1.1455	Ho ₂ O ₃
		La	1.1/28	La ₂ O ₃
		Lu	1.13/1	Lu ₂ O ₃
		Nd Dr	1.1664	NG2U3
		PI Sm	1.1703	PT ₆ U ₁₁
		5m Th	1 1510	
		Tm	1.1310	TD407
		v v	1.1421	V_O_
		Yh	1.2000	1203 YhaQa
		10	1.1507	10203
		TREO (Total Rare Nd ₂ O ₃ + Sm ₂ O ₃ + Ho ₂ O ₃ + Er2O ₃ + Note that Y_2O_3 is i	E Earth Oxide) = La_2O_3 + Eu_2O_3 + Gd_2O_3 + $Therefore The Thermal The Thermal The Thermal The Thermal The The Thermal The The The The The The The The The The$	+ CeO_2 + Pr_6O_{11} + D_4O_7 + Dy_2O_3 + O_3 + Y_2O_3 . calculation.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All samples collec	ted are located using a	a hand held GPS.
	Specification of the grid system used	The grid system u	sed is GDA94 Zone 51	
	Quality and adequacy of topographic control.	Nominal RLs base used initially; how coordinates are co	ed on regional topograp ever, these will be upd bllected.	ohic datasets are ated if DGPS
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Variable – first pa diagrams in repor	ss testing of geophysic t.	al anomalies. See
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	MRE not being pr	epared.	
	Whether sample compositing has been applied.	Air-core drill samp have been compo	les collected as 4m co sited from 1 m interval	mposites which s.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is typically strike of geology a	 oriented perpendicul and no bias is envisage 	ar to the interpreted
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	None observed.		
Sample security	The measures taken to ensure sample security.	Senior company p transport to assay	ersonnel supervise all laboratory in Perth.	sampling and
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.		

Criteria	JORC Code explanation	Commentary				
<i>Mineral tenement and land tenure status</i>	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	The Dingo Rocks Project comprises a single granted exploration licence (E63/2070). The tenement covers 271km ² located ~600km south-east of Perth and 100km south of Norseman.				
	interests, historical sites, wilderness or national park and environmental settings.	E63/2070 is held by ERL (Aust) Pty Ltd, a wholly owned subsidiary of Minerals 260 Limited.				
		The Dingo Rocks Project covers part of 2 Native Title Determinations including the Tjaltjraak (WAD6097/1998), and Ngadju (WAD6020/1998).				
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in good standing.				
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The first reported work over the project area was that by Central Norseman Gold Corp in the early 1980's, targeting base metals and uranium.				
		Immediately south of E63/2070 was explored for coal/lignite by Western Collieries Ltd at a similar time. Several explorers have held tenements with partial overlap since, targeting gold, nickel, base metals, PGE and/or diamonds however the most comprehensive work appears to be that completed by Anglogold Ashanti from 2009 to 2013. During this period Anglogold Ashanti completed significant soil geochemical traverses over the entire tenement area, followed by shallow aircore drilling over selected targets. No deep drilling targeting the magnetic anomalies appears to have been completed.				
Geology	Deposit type, geological setting and style of mineralisation.	The Project lies within the Central Biranup Zone of the Proterozoic Albany Fraser Province, proximal to the southeastern margin of the Archean Yilgarn Craton. Lithologies of the Biranup Zone comprise paragneiss, orthogneiss and metabasic rocks. Basement lithologies are mainly concealed by Phanerozoic cover sediments including paleo-channel deposits up to 100m thick. It is interpreted that there is a subordinate portion of reworked Archaean rocks within the package. Magnetics of the area display strong deformation with complex folding, faulting and thrusting.				
		The project area is covered by the 1:250k Norseman and Esperance geological map sheets and is partially covered by the 1:100k Cowalinya geological map sheet.				
		The tenement is predominantly covered by a variety of sheetwash, lacustrine, eolian, colluvial, residual and relict deposits, masking the underlying geology, however the interpreted basement geology is strongly deformed Archean granite, sedimentary and mafic rocks, and Proterozoic metasedimentary rocks.				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	See diagrams and appendix is attached appendix				
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See diagrams and appendix in attached report.				

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary			
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	See Appendix 1 above.			
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	See Appendix 1 above.			
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	None reported.			
Relationship between	These relationships are particularly important in the reporting of Exploration Results.				
widths and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Unknown at this stage – further drilling planned.			
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').				
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures in body of report			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all sampling reported are shown on diagrams included in the ASX report.			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data reported.			
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Additional reconnaissance AC drilling Petrographic descriptions of EOH bedrock samples Ground EM surveys over magnetic/gravity targets 			